Neutrino and dark matter

Subhendra Mohanty Physical Research Laboratory, Ahmedabad

21-cm EDGES experiment Bowman et al Nature 2018

DM-baryon Cross-section σ =8×10–20~cm2 and DM particle mass $m\chi$ =0.3~GeV (red); σ =3×10–19~cm2 and $m\chi$ =2~GeV (green), and σ =1×10–18~cm2 and $m\chi$ =0.01~GeV (blue). The corresponding 21-cm signals in the absence of b-DM scattering are shown as short-dashed curves.

Barkana, Nature, 2018, Possible signature of Dark Matter

Stacy McGaugh Phys Rev Lett. 2018

			$\Lambda { m CDM}^{ m a}$	$NoCDM^{b}$	ACDM	NoCDM
z	ν (MHz)	T_{γ} (K)	T_S	(K)	T_{21}	(mK)
Cosmic Dawn						
16	83	46.3	6.16	6.56	-226	-499
17	79	49.1	6.90	7.34	-218	-482
18	75	51.8	7.67	8.15	-211	-467
19	71	54.5	8.48	9.02	-204	-452
Dark Ages						
50	28	139	119	119	-10	-22
100	14	275	197	203	-33	-68
200	7	548	471	478	-19	-37

TABLE I. Predicted Spin Temperatures and 21cm Absorption

^a Λ CDM: $\Omega_b = 0.0488$, $\Omega_{CDM} = 0.2633$, $\Omega_{\Lambda} = 0.6879$, h = 0.675. ^b NoCDM: $\Omega_b = 0.039$, $\Omega_{CDM} = 0$, $\Omega_{\Lambda} = 0.91$, h = 0.75

(RECFAST inputs).

Does neutrino self-interaction have an effect on 21-cm absorption ?

Interactions between active neutrinos

Lancaster et al-1704.06657

$$\mathcal{L} = y \, \phi \, \nu^c \, \nu$$

$$G = \frac{y^2}{M_{\phi}^2}$$

Constraints on from CMB, LSS ...

Table 1. Parameter constraints in the Λ CDM mode for 4 different data combinations. Unless otherwise noted, we display the 68% confidence limits.

Parameter	\mathbf{TT}	TT + Pol	TT + Pol + BAO	$TT + Pol + BAO + H_0$
$\Omega_{ m b}h^2$	0.02222 ± 0.00027	0.02223 ± 0.00017	0.02226 ± 0.00014	0.02231 ± 0.00014
$H_0 \; [{ m km/s/Mpc}]$	0.1190 ± 0.0026 68.1 ± 1.2	0.1193 ± 0.0016 67.90 ± 0.72	0.1189 ± 0.0011 68.11 ± 0.50	0.1183 ± 0.0011 68.36 ± 0.50
$ au_{ m reio}$	0.098 ± 0.033 0.9634 ± 0.0082	0.095 ± 0.024 0.9620 ± 0.0057	0.099 ± 0.022 0.9634 ± 0.0047	0.104 ± 0.022 0.9650 ± 0.0047
$10^9 A_{\rm s}$	2.28 ± 0.14	2.27 ± 0.10	2.284 ± 0.096	2.304 ± 0.098
$\log_{10}(G_{ m eff}{ m MeV}^2)$	< -3.48 (95%)	< -3.55 (95%)	< -3.57 (95%)	< -3.60 (95%)

Table 2. Parameter 68% confidence limits within the interacting neutrino mode.

Parameter	\mathbf{TT}	TT + Pol	TT + Pol + BAO	$TT + Pol + BAO + H_0$
$\Omega_{ m b}h^2$	0.02256 ± 0.00033	0.02248 ± 0.00017	0.02240 ± 0.00016	0.02244 ± 0.00016
$\Omega_{ m c}h^2$	0.1177 ± 0.0028	0.1200 ± 0.0017	0.1210 ± 0.0013	0.1206 ± 0.0012
$H_0 \; [{ m km/s/Mpc}]$	70.4 ± 1.3	$69.59\substack{+0.74\\-0.71}$	69.13 ± 0.51	69.33 ± 0.52
$ au_{ m reio}$	0.113 ± 0.036	$0.103\substack{+0.022\\-0.024}$	$0.094\substack{+0.021\\-0.023}$	0.098 ± 0.021
$n_{ m s}$	$0.9431^{+0.0091}_{-0.0084}$	0.9376 ± 0.0054	$0.9344^{+0.0045}_{-0.0047}$	0.9359 ± 0.0047
$10^9 A_{ m s}$	$2.21\substack{+0.15 \\ -0.16}$	$2.164\substack{+0.093\\-0.10}$	$2.131\substack{+0.087\\-0.095}$	2.145 ± 0.091
$\log_{10}(G_{ m eff}{ m MeV}^2)$	-1.83 ± 0.16	$-1.727\substack{+0.10\\-0.092}$	$-1.711\substack{+0.099\\-0.11}$	$-1.720\substack{+0.10\\-0.094}$

Lancaster et al 2017

Consequences of neutrino self-interactions in 'observed' cutoff at IceCube

* Cutoff of IceCube Neutrino Spectrum due to t-channel Resonant Absorption by CvB - Sadhukhan, Ashish Narang, SM,

arXiv:1808.01272

* Are We Looking at Neutrino Absorption Spectra at IceCube? – Sidhartha Karmakar, Sujata Pandey, Subhendu Rakhshit

arXiv:1810.04192

eV sterile neutrino

- LSND, MiniBoone, Reactor oscillation experiments
- Too comply with BBN and large mixing with active neutrinos- require self interactions via MeV scale vector or scalar particles Basudeb Dasgupta...

$$L = \bar{\nu}_s \gamma^{\mu} P_L \nu_s V^{\mu}, \qquad \mathcal{M}_V \sim 10 MeV$$

IceCube Signal

Bhavesh Chauhan and SM - 1808.04774

ANTA ANtarctic Impulsive Transient Antenna

Measures cosmic ray induced showers by their radio emission

ANITA anomalous events

event,flight	3985267,ANITA-I	15717147,ANITA-III
date	2006-12-28	2014-12-20
altitude	2.56 km	2.75 km
angle θ_h	-27.4±0.3°	-35.0±0.3°
shower energy	0.6±0.4 EeV	0.56 ^{+0.3} EeV
chord length	5800 km	7300 km

Relating flavour and neutrino anomalies

- Lepton flavour unitarity violation in $b \to s \mu^+ \mu^- \qquad b \to c \, \tau \, \nu$
- Magic bullet is the vector
 Leptoquark : U1=(3,1,2/3)

U1 Leptoquark couplings

 $-\mathcal{L} \supset (V \cdot g_L)_{ij} \ \bar{u}_L^i \gamma^\mu U_{1,\mu} \nu_L^j$ $+ (g_L)_{ij} \ \overline{d}^i_L \gamma^\mu U_{1,\mu} e^j_L$ $+ (g_R)_{ij} \bar{d}^i_R \gamma^\mu U_{1,\mu} e^j_R$ $+ (g_{\chi})_i \bar{u}^i_R \gamma^{\mu} U_{1,\mu} \chi_R$

Explaining ANITA events by Leptoquarks - Bhavesh Chauhan, SM 1812.00919

- Survey of DM-neutrino interaction operators and experimental signatures - Interactions of Ultrahigh Energy Neutrinos with Dark Matter: A model building perspective - Pandey, Karmakar, Rakshit arXiv:1810.04203
- Supersymmetric gauged U(1) Lµ–Lτ model for neutrinos and the muon (g-2) anomaly Heerak Banerjee, Pritibhajan Byaktiand Sourov Roy 1805.04415 - AMS-02 positron excess. Leptophilic DM.

Thank You