Discussion on Light Sterile Neutrino

Sanjib Kumar Agarwalla

sanjib@iopb.res.in

Institute of Physics, Bhubaneswar, India

Leptonic CP-violation: Important Open Question

Is CP violated in the neutrino sector, as in the quark sector?

Mixing can cause CPV in v sector, provided $\delta_{CP} \neq 0^{\circ}$ and 180°

Need to measure the CP-odd asymmetries:

$$\Delta P_{\alpha\beta} \equiv P(\nu_{\alpha} \to \nu_{\beta}; L) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta}; L) \ (\alpha \neq \beta)$$

$$\Delta P_{e\mu} = \Delta P_{\mu\tau} = \Delta P_{\tau e} = 4J_{CP} \times \left[\sin\left(\frac{\Delta m_{21}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{32}^2}{2E}L\right) + \sin\left(\frac{\Delta m_{13}^2}{2E}L\right) \right]$$

Jarlskog CP-odd Invariant $\rightarrow J_{CP} = \frac{1}{8}\cos\theta_{13}\sin 2\theta_{13}\sin 2\theta_{23}\sin 2\theta_{12}\sin \delta_{CP}$

Three-flavor effects are key for CPV, need to observe interference

Conditions for observing CPV: 1) Non-degenerate masses \checkmark 2) Mixing angles $\neq 0^{\circ}$ and $90^{\circ} \checkmark$ 3) $\delta_{CP} \neq 0^{\circ}$ and 180° (Hints)

Present Status of Oscillation Parameters

NuFIT Group, arXiv:1811.05487v1 [hep-ph]

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

		Normal Ord	lering (best fit)	Inverted Ordering ($\Delta \chi^2 = 9.3$)		
		bfp $\pm 1\sigma$	3σ range	bfp $\pm 1\sigma$	3σ range	
	$\sin^2 \theta_{12}$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	$0.310^{+0.013}_{-0.012}$	$0.275 \rightarrow 0.350$	
with SK-atm	$\theta_{12}/^{\circ}$	$33.82^{+0.78}_{-0.76}$	$31.61 \rightarrow 36.27$	$33.82^{+0.78}_{-0.75}$	$31.62 \rightarrow 36.27$	
	$\sin^2 \theta_{23}$	$0.582^{+0.015}_{-0.019}$	$0.428 \rightarrow 0.624$	$0.582^{+0.015}_{-0.018}$	$0.433 \rightarrow 0.623$	
	$\theta_{23}/^{\circ}$	$49.7^{+0.9}_{-1.1}$	$40.9 \rightarrow 52.2$	$49.7^{+0.9}_{-1.0}$	$41.2 \rightarrow 52.1$	
	$\sin^2 \theta_{13}$	$0.02240^{+0.00065}_{-0.00066}$	$0.02044 \rightarrow 0.02437$	$0.02263\substack{+0.00065\\-0.00066}$	$0.02067 \rightarrow 0.02461$	
	$\theta_{13}/^{\circ}$	$8.61^{+0.12}_{-0.13}$	$8.22 \rightarrow 8.98$	$8.65^{+0.12}_{-0.13}$	$8.27 \rightarrow 9.03$	
	$\delta_{\rm CP}/^{\circ}$	217^{+40}_{-28}	$135 \rightarrow 366$	280^{+25}_{-28}	$196 \rightarrow 351$	
	$\frac{\Delta m^2_{21}}{10^{-5}~{\rm eV^2}}$	$7.39\substack{+0.21\\-0.20}$	$6.79 \rightarrow 8.01$	$7.39\substack{+0.21\\-0.20}$	$6.79 \rightarrow 8.01$	
	$\frac{\Delta m_{3\ell}^2}{10^{-3} \text{ eV}^2}$	$+2.525^{+0.033}_{-0.031}$	$+2.431 \rightarrow +2.622$	$-2.512\substack{+0.034\\-0.031}$	$-2.606 \rightarrow -2.413$	

Present Status of Oscillation Parameters

Defining the 3σ relative precision of the parameter by $2(x^{up} - x^{low})/(x^{up} + x^{low})$, where x^{up} (x^{low}) is the upper (lower) bound on a parameter x at the 3σ level, we obtain the following 3σ relative precisions (marginalizing over ordering):

$14\% (\theta_{12})$,	$8.9\%(\theta_{13})$,	$27 [24]\% (\theta_{23})$,	Δm^2	$\int \Delta m_{31}^2 > 0$	for NO,
$16\% (\Delta m_{21}^2)$,	$7.8[7.6]\%(\Delta m^2_{3\ell} $),	$100[92]\%(\delta_{\rm CP}),$	$\Delta m_{3\ell} = \langle$	$\Delta m_{32}^2 < 0$	for IO.

NuFIT Group, arXiv:1811.05487v1 [hep-ph]

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Elements of the PMNS Matrix

NuFIT 4.0 (2018)

$$|U|_{3\sigma}^{\text{w SK atm}} = \begin{pmatrix} 0.797 \rightarrow 0.842 & 0.518 \rightarrow 0.585 & 0.143 \rightarrow 0.156 \\ 0.235 \rightarrow 0.484 & 0.458 \rightarrow 0.671 & 0.647 \rightarrow 0.781 \\ 0.304 \rightarrow 0.531 & 0.497 \rightarrow 0.699 & 0.607 \rightarrow 0.747 \end{pmatrix}$$

$$J_{\rm CP}^{\rm best} = -0.019, \qquad J_{\rm CP}^{\rm quarks} = (3.18 \pm 0.15) \times 10^{-5}$$

Very interesting developments in recent years

Great opportunity to establish CP-violation in lepton sector

Electron neutrino and anti-neutrino separation in SK

Sample selection: Multi-GeV Single Ring anti-v_e and v_e-like

Number of decay electrons

(Multi-ring events are in general more complicated separation is done using a likelihood) Separate neutrinos from anti-neutrinos in the single-ring sample using the number of observed decay electrons

The outgoing π⁻ from an anti-neutrino CC-1 π event can be absorbed on a ¹⁶O nuclei before it decays. The lack of an outgoing muon means there is no possibility of a subsequent Michel (decay) electron

Light Sterile Neutrinos: A White Paper

K. N. Abazajian^a,¹ M. A. Acero,² S. K. Agarwalla,³ A. A. Aguilar-Arevalo,² C. H. Albright,^{4,5} S. Antusch,⁶ C. A. Argtelles,⁷ A. B. Balantekin,⁸ G. Barenboim⁸,³ V. Barger,⁸ P. Bernardini,⁹ E Bezrukov,¹⁰ O. E. Bjælde,¹¹ S. A. Bogacz,¹² N. S. Bowden,¹³ A. Boyarsky,¹⁴ A. Bravar,¹⁵ D. Bravo Berguño,16 S. J. Brice,5 A. D. Bross,5 B. Caccianiga,77 F. Cavanna,18,19 E. J. Chun,20 B. T. Cleveland,²¹ A. P. Collin,²² P. Coloma,¹⁶ J. M. Conrad,²³ M. Cribier,²² A. S. Cucoanes,²⁴ J. C. D'Olivo,² S. Das,²⁵ A. de Gouvêa,²⁶ A. V. Derbin,²⁷ R. Dharmapalan,²⁸ J. S. Diaz,²⁹ X. J. Ding,¹⁶ Z. Djurcic,³⁰ A. Donini,^{31,3} D. Duchesneau,³² H. Ejiri,³³ S. R. Elliott,³⁴ D. J. Ernst,³⁵ A. Esmaili,³⁶ J. J. Evans,^{37,38} E. Fernandez-Martinez,³⁹ E. Figueroa-Feliciano,²³ B. T. Fleming^{a,18} J. A. Formaggio^{a,23} D. Franco,⁴⁰ J. Gaffiot,³² R. Gandhi,⁴¹ Y. Gao,⁴² G. T. Garvey,³⁴ V. N. Gavrin,⁴⁵ P. Ghoshal,⁴¹ D. Gibin,⁴⁴ C. Giunti,⁴⁵ S. N. Gninenko,⁴⁵ V. V. Gorbachev, 45 D. S. Gorbunov, 45 R. Guenette, 18 A. Guglielmi, 44 F. Halzen, 46,8 J. Hamann,11 S. Hannestad,11 W. Haxton,47,48 K. M. Heeger,8 R. Henning,49,50 P. Hernandez,3 P. Huber^{b, 16} W. Huelsnitz, ^{34, 51} A. Ianni, ⁵² T. V. Ibragimova, ⁴⁰ Y. Karadzhov, ¹⁵ G. Karagiorgi, ⁵³ G. Keefer,¹³ Y. D. Kim,⁵⁴ J. Kopp¹,⁵ V. N. Kornoukhov,⁵⁵ A. Kusenko,^{56,57} P. Kyberd,⁵⁸ P. Langacker, 59 Th. Lasserre^a, 22, 40 M. Laveder, 40 A. Letourneau, 22 D. Lhuillier, 22 Y. F. Li, 61 M. Lindner,62 J. M. Link^{b,16} B. L. Littlejohn,⁸ P. Lombardi,¹⁷ K. Long,63 J. Lopez-Pavon,64 W. C. Louis^{4,34} L. Ludhova,¹⁷ J. D. Lykken,⁵ P. A. N. Machado,^{63,66} M. Maltoni,³¹ W. A. Mann, 67 D. Marfatia, 68 C. Mariani, 53, 16 V. A. Matveev, 43, 69 N. E. Mavromatos, 70, 39 A. Melchiorri,⁷¹ D. Meloni,⁷² O. Mena,³ G. Mention,²² A. Merle,⁷³ E. Meroni,¹⁷ M. Mezzetto,⁴⁴ G. B. Mills,34 D. Minic,16 L. Miramonti,17 D. Mohapatra,16 R. N. Mohapatra,51 C. Montanari,74 Y. Mori,75 Th. A. Mueller,76 H. P. Mumm,77 V. Muratova,77 A. E. Nelson,78 J. S. Nico,77 E. Noah,¹⁵ J. Nowak,⁷⁹ O. Yu. Smirnov,⁶⁹ M. Obolensky,⁴⁰ S. Pakvasa,⁸⁰ O. Palamara,^{18,52} M. Pallavicini,⁸¹ S. Pascoli,⁸² L. Patrizii,⁸³ Z. Pavlovic,³⁴ O. L. G. Peres,³⁶ H. Pessard,³² F. Pietropaolo,⁴⁴ M. L. Pitt,¹⁶ M. Popovic,⁵ J. Pradler,⁸⁴ G. Ranucci,¹⁷ H. Ray,⁸⁵ S. Razzaque,⁸⁶ B. Rebel,⁵ R. G. H. Robertson,^{87,78} W. Rodejohann^a,⁶² S. D. Rountree,¹⁶ C. Rubbia,39,52 O. Ruchayskiy,39 P. R. Sala,77 K. Scholberg,38 T. Schwetz¹,62 M. H. Shaevitz,53 M. Shaposhnikov,⁹⁹ R. Shrock,⁹⁰ S. Simone,⁹¹ M. Skorokhvatov,⁹² M. Sorel,³ A. Sousa,⁹³ D. N. Spergel,⁹⁴ J. Spitz,²³ L. Stanco,⁴⁴ I. Stancu,²⁸ A. Suzuki,⁹⁵ T. Takeuchi,¹⁶ I. Tamborra,⁹⁶ J. Tang, 97,98 G. Testera, 81 X. C. Tian, 99 A. Tonazzo, 40 C. D. Tunnell, 100 R. G. Van de Water, 34 L. Verde, 101 E. P. Veretenkin, 43 C. Vignoli, 52 M. Vivier, 22 R. B. Vogelaar, 16 M. O. Wascko, 63 J. F. Wilkerson, 49, 102 W. Winter, 97 Y. Y. Y. Wong^{1, 25} T. T. Yanagida, 57 O. Yasuda, 103 M. Yeh, 104 F. Yermia, 24 Z. W. Yokley, 16 G. P. Zeller, 5 L. Zhan, 61 and H. Zhang 62

¹University of California, Irvine

²Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México

³Instineo de Física Corpuscular, CSIC and Universidad de Valencia

⁴Northern Ittinois University

⁵Fermi National Accelerator Laboratory

6University of Basel

According to INSPIRE: 669 Citations

*Section editor *Editor and corresponding author (pahuber#vt.edu and jmlink#vt.edu) Sterile neutrinos: singlets of SU(2) \times U(1) gauge group, provide economical extension of the SM

Extensive study of sterile neutrinos at various energy scales

GUT: see-saw models of neutrino mass, leptogenesis

TeV: production at LHC and impact on EWPOs

keV: (warm) dark matter candidates

eV: SBL and LBL oscillation experiments

sub-eV: θ_{13} - reactors and solar neutrinos

SBL data hint towards a light eV-Scale Sterile Neutrino

Recent results from SBL experiments hint towards high $\Delta m^2 \approx 0.1 - 10 \text{ eV}^2$ oscillation Require additional neutrinos with masses at eV scale

- v_s: Sterile States (no weak interactions)
- Can feel gravity
- Can affect oscillations through mixing
- Well postulated in see-saw models

Introduce v_{R} in the SM: Dirac mass $m_{D}\overline{\nu_{R}}\nu_{L}$ + Majorana mass $m_{M}\overline{\nu_{R}}^{c}\nu_{R}$ 6 massive Majorana neutrinos : $(v_{eL}, v_{\mu L}, v_{\tau L}) + (v_{eR}, v_{\mu R}, v_{\tau R})$ Light left-handed anti- v_{R} = Light left-handed sterile neutrino : $\nu_{R}^{c} \rightarrow \nu_{sL}$

Where to look for eV-scale active-sterile oscillation?

- $(L/E \sim 1 \text{ km/1 GeV})$
- Atmospheric Neutrinos in IceCube $(L/E \sim 1000 \text{ km/1 TeV})$

One Light eV-Scale Sterile Neutrino

$$\sum_{\substack{v_4 \\ v_3 \\ v_2 \\ v_1 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_2 \\ v_1 \\ v_2 \\$$

$$U = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} & U_{e4} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} & U_{\mu 4} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} & U_{\tau 4} \\ U_{s1} & U_{s2} & U_{s3} & U_{s4} \end{pmatrix}$$
SBL

Add one sterile v with three active ones at the eV scale

Small perturbation of 3v mixing

 $|U_{e4}|^2 \ll 1, |U_{\mu4}|^2 \ll 1, |U_{\tau4}|^2 \ll 1, |U_{s4}|^2 \approx 1$

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

3+1 Short Baseline Oscillation

See reviews by C. Giunti

Gallium Neutrino Anomaly

Measurements consistently lower than expectation

Suggests possible v_e disappearance at 2.7σ due to active – sterile oscillation Giunti and Laveder, arXiv:1006.3244

How well do we know the efficiencies of the radiochemical detection processes?

Reactor Anti-neutrino Anomaly

Mention et al., arXiv:1101.2755 [hep-ex]

Recent reanalysis of reactor fluxes shows ~ 3.5% upward shift in flux

Mueller et al., arXiv:1101.2663, confirmed by P. Huber, arXiv:1106.0687

Overall reduction in predicted flux compared to existing data can be interpreted as \bar{v}_e disappearance with $\Delta m^2 \sim 1 eV^2$ and L = 10 - 100 m

Does source and detector size wash out oscillations?

Today's SBL Reactor Experiments

NEOS DANSS	Core Φ 3.1 m 3.2 m	Core <i>H</i> 3.8 m 3.7 m	P _{th} 2.8 GW 3.1 GW	²³⁵ ∪% ~4 ~4	Baseline (m) 23.7 10.7 - 12.7
	Core o	Core H	Pth	²³⁵ U%	Baseline (m)
STEREO	40 cm	80 cm	58 MW	93	9-11
SOLID	50 cm	90 cm	50-80 MW	93	6-9
PROSPECT	44 cm	51 cm	85 MW	> 93	7-9

Core size and fuel composition impact on systematics & ν rates

۰

	$\sigma/E\%$	average rate/day	n capture
DANSS	17	4101 ± 11	Gd
NEOS	5	\sim 1976	Gd
STEREO	9	396 ± 4.7	Gd
PROSPECT	4.5	\sim 750	Li
SOLID(preliminary)	14	~ 1750 ON & ~ 1375 OFF	Li

NEOS and DANSS

NEOS arXiv:1610:05134

DANSS arXiv:1804:04046

Best fit points very similar: $(\sin^2 2\theta, \Delta m^2) \simeq (0.05, 1.4 \text{eV}^2)$

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

NEOS and DANSS

Model-Independent $\bar{\nu}_e$ SBL Oscillations

[Gariazzo, CG, Laveder, Li, PLB 782 (2018) 13, arXiv:1801.06467]

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Global Analysis

[See also Dentler, Hernandez-Cabezudo, Kopp, Machado, Maltoni, Martinez-Soler, Schwetz, arXiv:1803.10661]

Courtesy C. Giunti

LSND Result

 ${
m LSND}: {
m L} = 30 {
m m}, < E_{
u_{ar{\mu}}} > = 40 {
m MeV}$

HARP @ CERN can test LSND \bar{v}_e background estimate

MiniBooNE Experiment

MiniBooNE Data Analysis

Luminosity	neutrino mode $12.84 \times 10^{20} \text{ POT}$	antineutrino mode $11.27 \times 10^{20} \text{ POT}$
Reconstructed Neutrino Energy	$200 < E_{\nu}^{QE} <$	$< 1250 { m ~MeV}$
Excess events BG subtracted	381.2 ± 85.2	79.3 ± 28.6

Possibly Important Caveat Mild tension ~ 2+ sigma between neutrino and antineutrino modes

Updated Neutrino Mode Analysis MiniBooNE Collaboration1805.12028 Complements earlier antineutrino results collected 2002-2010

MiniBooNE Anomaly

$$E_{\nu}^{(\text{reconst.})} = \frac{2m_n E_e + m_p^2 - m_n^2 - m_e^2}{2(m_n - E_e + \cos\theta_e \sqrt{E_e^2 - m_e^2})}.$$

Measure charged lepton energy/angle Observed ~ 400 events, PMNS predicts 0 Combined $\nu/\bar{\nu}$ modes : 4.8 σ excess

MiniBooNE Collaboration 1805.12028

Can eV-scale Sterile Neutrino explain LSND+ MiniBooNE Anomaly?

MiniBooNE Collaboration 1805.12028

Dentler et. al. 1803.10661

Can eV-scale Sterile Neutrino explain LSND+ MiniBooNE Anomaly?

@ face value the scaling seems to support LSND/MB compatibility

MiniBooNE Collaboration 1805.12028

Can eV-scale Sterile Neutrino explain LSND+ MiniBooNE Anomaly?

Significant tension with multiple null disappearance results
Dentler et. al. 1803.10661

New Bounds from MINOS+

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Let us Zoom the Muon Disappearance Results

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Sterile Neutrinos with IceCube

Constraining limits on sterile neutrino mixing in muon and tau sectors

No Anomaly in Muon Neutrino Disappearance

Joint Analysis

Joint Analysis of Daya Bay/Bugey-3/MINOS

PRL 117, 151801 (2016)+MINOS+ results

The combined results can largely exclude the LSND and MiniBooNE region assuming 3+1 neutrino model
 Combined : Phys. Rev. Lett. 117, 151801
 MINOS : Phys. Rev. Lett. 117, 151803
 Daya Bay : Phys. Rev. Lett. 117, 151802

What Cosmology can infer about Light Sterile Neutrino?

Sterile neutrinos require $\sin^2 2\theta_{\mu e} > 10^{-3}$, $m_4 < \text{few eV}$

Generic early universe thermalization

$$\Gamma > H \implies \sin^2 2\theta_{\mu e} G_F^2 T^5 > \sqrt{g_*} \frac{T^2}{m_{\rm Pl}} \implies n_4 \sim n_{\nu}$$

Excluded by BBN/CMB $N_{\rm eff} = 2.99 \pm 0.17$ Planck 1807.06209

Unless max temperature satisfies $T_{\max} \lesssim 15 \text{ MeV} \left(\frac{10^{-3}}{\sin^2 2\theta_{\mu e}}\right)^{1/3}$

Interesting discussion in arXiv:1806.10629v1 by Chu, Dasgupta, Dentler, Kopp, Saviano

Need to see SBL Oscillation Pattern: Smoking Gun Signature

STEREO

Gariazzo et al., 1703.00860

by observing the oscillation pattern and we have already some hints...

Very Short Baseline Oscillation Experiment

Neutrino Sources

- Decay-at-rest beam from proton beam dump
- Small core reactor source
- Very high activity radioactive source
- Observe the L/E dependence of the event rates within a long v detector
- Background distribution is either independent of L or goes like 1/L²
- Powerful verification of the short baseline oscillation/new physics

Decay-At-Rest (or Beam Dump) Neutrino Source

800 MeV protons from cyclotrons interact in a low-A target (C, H₂O) producing π^+ and, at a low level, π^-

 $p + X \to \pi^{\pm} + X'$

Low-A target is embedded in a high-A, dense material where pions are brought to rest

 π^- & daughter μ^- captured before DIF, minimizing $\bar{\nu}_e$

Agarwalla, Conrad and Shaevitz, arXiv: 1105.4984

Short Baseline Neutrino Oscillation Waves

Similar study with NOvA, Gd doped Super-K, or JUNO

Agarwalla and Huber, arXiv: 1007.3228 Agarwalla, Conrad and Shaevitz, arXiv: 1105.4984

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

An Intrinsic Limitation of SBL Setup

- In SBL expts, $L/E \sim 1$ (m/MeV) to probe $\sim 1 \text{ eV}^2$ mass-squared difference
- Oscillations due to solar and atmospheric frequencies are almost negligible
- We essentially work in a two-flavor framework, governed by the new frequency Δm_{41}^2 , and the new active-sterile mixing elements U_{e4} , $U_{\mu4}$, $U_{\tau4}$
- Cannot observe the interference between the sterile & atm/sol frequencies
- Cannot observe the presence of CP phases in SBL experiments
- Interference is the key in order to measure the new CP phases that are there due to the new sterile states, and LBL experiments can probe them

Accelerator Long-Baseline Neutrino Experiments $(v_{\mu} \rightarrow v_{e})$ and $(anti-v_{\mu} \rightarrow anti-v_{e})$ T2K (Japan) & NOvA (USA) [running, off-axis] **DUNE (USA)** [upcoming, on-axis] **T2HK (Japan) [upcoming, off-axis]**
Superbeams

Traditional approach: Neutrino beam from pion decay

Long-baseline and Light Sterile Neutrino

Impact of light eV-scale sterile neutrino in currently running and upcoming long-baseline neutrino oscillation experiments

Can sterile neutrinos generate new observable CP-violating effects at long-baseline experiments?

CPV and Averaged Oscillations

$$A_{\alpha\beta}^{\rm CP} \equiv P(\nu_{\alpha} \to \nu_{\beta}) - P(\bar{\nu}_{\alpha} \to \bar{\nu}_{\beta})$$

$$A_{\alpha\beta}^{\rm CP} = -16J_{\alpha\beta}^{12}\sin\Delta_{21}\sin\Delta_{13}\sin\Delta_{32}$$

$$\Delta \equiv \Delta_{13} \simeq \Delta_{23} \gg 1$$

if

It can be:

osc. averaged out by finite E resol.

(if sin δ = Ø)

 $\langle \sin^2 \Delta \rangle = 1/2$

The bottom line is that if one of the three v_i is ∞ far from the other two ones this does not erase CPV (relevant for the 4v case)

 $A_{\alpha\beta}^{\rm CP} \neq 0$

Very New Topic: Lots of New Studies

Recent studies after θ_{13} discovery in the context of T2K, NOvA, and DUNE:

- Imprints of CP violation induced by sterile neutrinos in T2K data Klop, Palazzo (arXiv:1412.7524)
- 2) Sterile neutrino at the Deep Underground Neutrino Experiment Berryman, de Gouvea, Kelly, Kobach (arXiv:1507.03986)
- 3) The impact of sterile neutrinos on CP measurements at long baselines Gandhi, Kayser, Masud, Prakash (arXiv:1508.06275)
- 3-flavor and 4-flavor implications of the latest T2K and NOvA electron (anti-)neutrino appearance results
 Palazzo (arXiv:1509.03148)
- 5) Discovery potential of T2K and NOvA in the presence of a light sterile neutrino **Agarwalla, Chatterjee, Dasgupta, Palazzo (arXiv:1601.05995)**

Very New Topic: Lots of New Studies

Recent studies after θ_{13} discovery in the context of T2K, NOvA, and DUNE:

- 6) Physics reach of DUNE with a light sterile neutrino Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)
- 7) Constraints on sterile neutrino oscillations using DUNE near detector **Choubey, Pramanik (arXiv:1604.04731)**
- 8) Octant of θ_{23} in danger with a light sterile neutrino Agarwalla, Chatterjee, Palazzo (arXiv:1605.04299)
- 9) False signals of CP-Invariance violation at DUNE **de Gouvea, Kelly (arXiv:1605.09376)**
- 10) Capabilities of long-baseline experiments in the presence of a sterile neutrino **Dutta, Gandhi, Kayser, Masud, Prakash (arXiv:1607.02152)**

The list is not complete.....

Mixing matrix in 3+1 Scheme

$$U = \tilde{R}_{34} R_{24} \tilde{R}_{14} R_{23} \tilde{R}_{13} R_{12}$$

$$3_{\nu}$$

$$R_{ij} = \begin{bmatrix} c_{ij} & s_{ij} \\ -s_{ij} & c_{ij} \end{bmatrix} \qquad \tilde{R}_{ij} = \begin{bmatrix} c_{ij} & \tilde{s}_{ij} \\ -\tilde{s}_{ij}^* & c_{ij} \end{bmatrix} \qquad \begin{array}{c} s_{ij} = \sin \theta_{ij} \\ c_{ij} = \cos \theta_{ij} \\ \tilde{s}_{ij} = s_{ij} e^{-i\delta_{ij}} \end{array}$$

 $\begin{array}{ccc} 3_{V} & \begin{cases} 3 \text{ mixing angles} \\ 1 \text{ Dirac phases} \\ 2 \text{ Majorana phases} \end{cases} \begin{array}{ccc} 3+1 \\ 3 \\ 3 \\ 3 \\ \end{array} \begin{array}{ccc} 6 \\ 3+1 \\ 3 \\ 3 \\ \end{array} \begin{array}{ccc} 6 \\ 3+N \\ 3 \\ 3 \\ \end{array} \begin{array}{ccc} 3+3N \\ 1+2N \\ 2+N \\ \end{array} \end{array}$

We have more sources of CPV in the 3+1 flavor scheme

 $\theta_{14} = \theta_{24} = \theta_{34} = 0 \Rightarrow 3$ -flavor case

Few words on Parameterization

• When mixing involving the 4th state is zero ($\theta_{14} = \theta_{24} = \theta_{34} = 0$), it returns the 3v matrix in its common parameterization

• For small values of θ_{13} , and of the mixing angles involving the 4th state, one has $|U_{e3}|^2 \simeq s_{13}^2$, $|U_{e4}|^2 = s_{14}^2$, $|U_{\mu4}|^2 \simeq s_{24}^2$ and $|U_{\tau4}|^2 \simeq s_{34}^2$, with a clear physical interpretation of the new mixing angles

• The leftmost positioning of the matrix \tilde{R}_{34} guarantees that the vacuum v_{μ} to v_{e} transition probability is independent of θ_{34} and of the related CP-phase δ_{34}

Three-flavor Oscillation Probability

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

A New Interference Term in the 3+1 Scheme

- Δ_{14} >> 1 : fast oscillations are averaged out
- But interference of $\Delta_{14}\, \&\, \Delta_{13}\, \text{survives}$ and is observable

$$P_{\mu e}^{4\nu} \simeq P^{\text{ATM}} + P_{\text{I}}^{\text{INT}} + P_{\text{II}}^{\text{INT}}$$

$$s_{13} \sim s_{14} \sim s_{24} \sim 0.15 \sim \varepsilon$$

$$\alpha = \delta \mathbf{m}^2 / \Delta \mathbf{m}^2 \sim 0.03 \sim \varepsilon^2$$

$$P_{\text{I}}^{\text{ATM}} \simeq 4s_{23}^2 s_{13}^2 \sin^2 \Delta \qquad \sim \varepsilon^2$$

$$P_{\text{I}}^{\text{INT}} \simeq 8s_{13} s_{23} c_{23} s_{12} c_{12} (\alpha \Delta) \sin \Delta \cos(\Delta + \delta_{13}) \qquad \sim \varepsilon^3$$

$$P_{\text{II}}^{\text{INT}} \simeq 4s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta + \delta_{13} - \delta_{14}) \qquad \sim \varepsilon^3$$

Sensitivity to the new CP-phase δ_{14}

Klop and Palazzo, arXiv:1412.7524v3 [hep-ph]

In vacuum, it is independent of θ_{34} and δ_{34}

Amplitude of the New Interference Term

Klop and Palazzo, arXiv:1412.7524v3 [hep-ph]

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Oscillation Parameters

Parameter	True Value	Marginalization Range		
$\sin^2 \theta_{12}$	0.304	Not marginalized		
$\sin^2 2\theta_{13}$	0.085	Not marginalized		
$\sin^2 \theta_{23}$	0.50	[0.34, 0.68]		
$\sin^2 \theta_{14}$	0.025	Not marginalized		
$\sin^2 \theta_{24}$	0.025	Not marginalized		
$\sin^2 \theta_{34}$	0, 0.025, 0.25	Not marginalized		
$\delta_{13}/^{\circ}$	[- 180, 180]	[- 180, 180]		
$\delta_{14}/^{\circ}$	[- 180, 180]	[- 180, 180]		
$\delta_{34}/^{\circ}$	[- 180, 180]	[- 180, 180]		
$\frac{\Delta m^2_{21}}{10^{-5}{\rm eV}^2}$	7.50	Not marginalized		
$\frac{\Delta m^2_{31}}{10^{-3}{\rm eV}^2}$ (NH)	2.475	Not marginalized		
$\frac{\Delta m^2_{31}}{10^{-3}{\rm eV}^2}$ (IH)	- 2.4	Not marginalized		
$\frac{\Delta m^2_{41}}{\text{eV}^2}$	1.0	Not marginalized		

 $s_{13} \sim s_{14} \sim s_{24} \sim 0.15$

DUNE Oscillation Probability

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Bi-events Plot for DUNE

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

Spectral Study is Vital

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

Mass Hierarchy Discovery at DUNE

248 kt-MW-year of exposure (0.708 MW, 120 GeV proton energy, 35 kt, 10 years)

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

MH discovery still above 5σ if all the new mixing angles are close to θ_{13} If $\theta_{34} = 30$ degree, the sensitivity can decrease to 4σ

CP-violation Searches at DUNE

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

- Sensitivity to CPV induced by δ_{13} reduced in 3+1 scheme
- Potential sensitivity also to the new CP-phases $\delta_{14} e \delta_{34}$
- Clear hierarchy in the sensitivity: $\delta_{13} > \delta_{14} > \delta_{34}$ for $\theta_{14} = \theta_{24} = \theta_{34} = 9^0$

Reconstruction of CP Phase at DUNE

Typical 1 σ uncertainty on $\delta_{13} \sim 20$ degree and on $\delta_{14} \sim 30$ degree if θ_{34} is 0

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

First Study on θ_{23} Octant with Light Sterile Neutrino

PRL 118, 031804 (2017)

PHYSICAL REVIEW LETTERS

week ending 20 JANUARY 2017

Octant of θ_{23} in Danger with a Light Sterile Neutrino

Sanjib Kumar Agarwalla,^{1,2,*} Sabya Sachi Chatterjee,^{1,2,†} and Antonio Palazzo^{3,4,‡} ¹Institute of Physics, Sachivalaya Marg, Sainik School Post, Bhubaneswar 751005, India ²Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400085, India ³Dipartimento Interateneo di Fisica "Michelangelo Merlin", Via Amendola 173, 70126 Bari, Italy ⁴Istituto Nazionale di Fisica Nucleare, Sezione di Bari, Via Orabona 4, 70126 Bari, Italy (Received 23 May 2016; revised manuscript received 5 December 2016; published 20 January 2017)

Bi-events Plot for DUNE

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Octant Discovery at DUNE with a Light Sterile v

DUNE Exposure, 248 kt.MW.yr

- Generate data with $\sin^2\theta_{23} = 0.42 (0.58)$ for LO (HO)
- For 3v case, we marginalize over θ_{23} and δ_{13} in the fit
- In 3+1 scheme, we fix $\theta_{14} = \theta_{24} = 9$ degrees and $\theta_{34} = 0$
- Marginalize over θ_{23} , δ_{13} , and δ_{14} in the fit

No Knowledge on Octant with a light Sterile v

In 3+1, the sensitivity to the octant of θ_{23} gets completely lost.

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

NC Searches in NOvA

$$|U_{\mu4}|^2 = \cos^2 \theta_{14} \sin^2 \theta_{24}$$

 $|U_{\tau4}|^2 = \cos^2 \theta_{14} \cos^2 \theta_{24} \sin^2 \theta_{34}$

	θ_{24}	θ_{34}	$U_{\mu4}^2$	$ U_{\tau 4} ^2$
NOvA	20.8°	31.2°	0.126	0.268
MINOS	7.3°	26.6°	0.016	0.20
SuperK	11.7°	25.1°	0.041	0.18
IceCube	4.1°	-	0.005	-
IceCube-DeepCore	19.4°	22.8°	0.11	0.15

NOvA NC Searches: arXiv:1706.04592v2

NuMI beam at Fermilab, we observe 95 neutral-current candidates at the Far Detector compared with 83.5 \pm 9.7(stat.) \pm 9.4(syst.) events predicted assuming mixing only occurs between active neutrino species. No evidence for $\nu_{\mu} \rightarrow \nu_{s}$ transitions is found. Interpreting these results within a

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

NC Searches in DUNE

FERMILAB-PUB-17-271-T

DUNE sensitivities to the mixing between sterile and tau neutrinos

Pilar Coloma ¹,* David V. Forero ^{2,3},[†] and Stephen J. Parke ^{1‡}

¹ Theoretical Physics Department, Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510, USA

> ² Instituto de Física Gleb Wataghin - UNICAMP, 13083-859, Campinas, SP, Brazil and

³ Center for Neutrino Physics, Virginia Tech, Blacksburg, VA 24061, USA (Dated: July 17, 2017)

Light sterile neutrinos can be probed in a number of ways, including electroweak decays, cosmology and neutrino oscillation experiments. At long-baseline experiments, the neutral-current data is directly sensitive to the presence of light sterile neutrinos: once the active neutrinos have oscillated into a sterile state, a depletion in the neutral-current data sample is expected since they do not interact with the Z boson. This channel offers a direct avenue to probe the mixing between a sterile neutrino and the tau neutrino, which remains largely unconstrained by current data. In this work, we study the potential of the DUNE experiment to constrain the mixing angle which parametrizes this mixing, θ_{34} , through the observation of neutral-current events at the far detector. We find that DUNE will be able to improve significantly over current constraints thanks to its large statistics and excellent discrimination between neutral- and charged-current events. PREPARED FOR SUBMISSION TO JHEP

FERMILAB-PUB-17-276-T

What measurements of neutrino neutral current events can reveal

arXiv:1708.01816v2 [hep-ph] 17 Dec 2017

Raj Gandhi,^a Boris Kayser,^b Suprabh Prakash,^c Samiran Roy^a

^aHarish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Allahabad 211019, India ^bTheoretical Physics Department, Fermilab, P.O. Box 500, Batavia, IL 60510 USA ^cInstituto de Física Gleb Wataghin - UNICAMP, 13083-859, Campinas, São Paulo, Brazil E-mail: raj@hri.res.in, boris@fnal.gov, samiranroy@hri.res.in, sprakasb@ifi.unicamp.br

ABSTRACT: We show that neutral current (NC) measurements at neutrino detectors can play a valuable role in the search for new physics. Such measurements have certain intrinsic features and advantages that can fruitfully be combined with the usual well-studied charged lepton detection channels in order to probe the presence of new interactions or new light states. In addition to the fact that NC events are immune to uncertainties in standard model neutrino mixing and mass parameters, they can have small matter effects and superior rates since all three flavours participate. We also show, as a general feature, that NC measurements provide access to different combinations of CP phases and mixing parameters compared to CC measurements at both long and short baseline experiments. Using the Deep Underground Neutrino Experiment (DUNE) as an illustrative setting, we demonstrate the capability of NC measurements to break degeneracies arising in CC measurements, allowing us, in principle, to distinguish between new physics that violates three flavour unitarity and that which does not. Finally, we show that NC measurements can enable us to restrict new physics parameters that are not easily constrained by CC measurements.

NC Searches in DUNE

$$\begin{split} N_{NC} &= N_{NC}^{\epsilon} + N_{NC}^{\mu} + N_{NC}^{\tau} = \phi_{\nu_{\mu}} \sigma_{\nu}^{NC} \left\{ P(\nu_{\mu} \rightarrow \nu_{\epsilon}) + P(\nu_{\mu} \rightarrow \nu_{\mu}) + P(\nu_{\mu} \rightarrow \nu_{\tau}) \right\} \\ &= \phi_{\nu_{\mu}} \sigma_{\nu}^{NC} \left\{ 1 - P(\nu_{\mu} \rightarrow \nu_{s}) \right\} \,, \end{split}$$

$$\begin{split} \Delta_{21} \ll \Delta_{31}, \Delta_{41} & \Delta_{ij} \equiv \Delta m_{ij}^2 L/4E. \\ P_{\mu s} \equiv P(\nu_{\mu} \rightarrow \nu_{s}) = 4|U_{\mu 4}|^2|U_{s4}|^2 \sin^2 \Delta_{41} + 4|U_{\mu 3}|^2|U_{s3}|^2 \sin^2 \Delta_{31} \\ &+ 8 \operatorname{Re} \left[U_{\mu 4}^* U_{s4} U_{\mu 3} U_{s3}^* \right] \cos \Delta_{43} \sin \Delta_{41} \sin \Delta_{31} \\ &+ 8 \operatorname{Im} \left[U_{\mu 4}^* U_{s4} U_{\mu 3} U_{s3}^* \right] \sin \Delta_{43} \sin \Delta_{41} \sin \Delta_{31}, \end{split}$$

Mass Ordering in 4v Scheme

Ordering scheme	N-N			N-I	I-	N	I-I	
Sign of Δm_{31}^2	+			+	-		-	
Sign of Δm_{41}^2	+			-	+		-	
Sign of Δm_{42}^2	+	+	-	-	+	-	-	-
Sign of Δm_{43}^2	+	-	-	-	+	+	+	-
Configuration	N-N-1	N-N-2	N-N-3	N-I	I-N-1	I-N-2	I-I-1	I-I-2

Thakore, Devi, Agarwalla, Dighe, arXiv:1804.09613 [hep-ph]

Sterile Neutrino Sensitivity with ICAL at INO

- For higher Δm², information is mainly in the number of events, so information about E'_h not so useful
- For lower △m², oscillation information in the energy and angular spectra, so E'_h crucial

 $V_{es} = \sqrt{2}G_F(N_e - N_n/2)$ between ν_e and ν_s , $V_{\mu s} = V_{\tau s} = -\sqrt{2}G_F N_n/2$ between $\nu_{\mu/\tau}$ and ν_s , between $\nu_{\mu/\tau}$ and ν_s , Thakore, Devi, Agarwalla, Dighe, arXiv:1804.09613 [hep-ph]

Sterile Neutrino Sensitivity with ICAL at INO

Thakore, Devi, Agarwalla, Dighe, arXiv:1804.09613 [hep-ph]

Mass Ordering of Sterile Neutrino

Thakore, Devi, Agarwalla, Dighe, arXiv:1804.09613 [hep-ph]

S. K. Agarwalla, IIT Bombay, Mumbai, India, 14th December, 2018

Light sterile neutrinos were interesting, are still interesting, and will remain interesting in near future as well.....

Discovery of a light sterile neutrino would prove that there is new physics beyond the SM at low-energies, which is completely orthogonal to new physics searches at high energies at the LHC.....

Let us continue our effort to look for them at any mass scale and at any energies.....

Three Flavor Effects in $v_{\mu} \rightarrow v_{e}$ oscillation probability

This channel suffers from: (Hierarchy – δ_{CP}) & (Octant – δ_{CP}) degeneracy! How can we break them?

Hierarchy – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

For v: Max: NH, -90° and Min: IH, 90°

Favorable combinations NH, LHP (-180° to 0°) and IH, UHP (0° to 180°)

Degeneracy pattern different between T2K & NOvA

DUNE: Large Earth matter effects Clear separation between NH and IH

Agarwalla, arXiv:1401.4705 [hep-ph]

Octant – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

Unfavorable CP values for neutrino are favorable for anti-neutrino & vice-versa

Agarwalla, Prakash, Sankar, arXiv: 1301.2574

Analytical Treatment

$$P^{4\nu}_{\mu e} \simeq P_0 + P_1 + P_2,$$

which in vacuum take the form

$$\begin{split} P_0 &\simeq 4s_{23}^2 s_{13}^2 \sin^2 \Delta, \\ P_1 &\simeq 8s_{13} s_{12} c_{12} s_{23} c_{23} (\alpha \Delta) \sin \Delta \cos(\Delta \pm \delta_{13}), \\ P_2 &\simeq 4s_{14} s_{24} s_{13} s_{23} \sin \Delta \sin(\Delta \pm \delta_{13} \mp \delta_{14}), \end{split}$$

the three small mixing angles have the similar size $s_{13} \sim s_{14} \sim s_{24} \simeq 0.15$, and therefore they can all be assumed to be of the same order e, while the ratio $\alpha \simeq \pm 0.03$ is of the order e^2 . This implies that

$$P_0 \sim e^2$$
, $P_1 \sim e^3$, $P_2 \sim e^3$.

Analytical Treatment

$$\theta_{23}=\frac{\pi}{4}\pm\eta,$$

 $\sin^2 \theta_{23}$ must lie in the range ~ [0.4, 0.6]. This implies that η is confined to relatively small values ($\eta \leq 0.1$) and can be considered of the same order of magnitude (ϵ) as s_{13} , s_{14} , and s_{24} . Therefore, it is legitimate to use the expansion

$$s_{23}^2 = \frac{1}{2}(1 \pm \sin 2\eta) \simeq \frac{1}{2} \pm \eta.$$

An experiment can be sensitive to the octant if, despite the freedom introduced by the unknown *CP* phases, there is still a difference between the probabilities in the two octants, i.e.,

$$\Delta P \equiv P^{\rm HO}_{\mu e}(\delta^{\rm HO}_{13},\delta^{\rm HO}_{14}) - P^{\rm LO}_{\mu e}(\delta^{\rm LO}_{13},\delta^{\rm LO}_{14}) \neq 0. \label{eq:deltaP}$$

$$\Delta P = \Delta P_0 + \Delta P_1 + \Delta P_2.$$

Analytical Treatment

$$\Delta P_0 \simeq 8\eta s_{13}^2 \sin^2 \Delta.$$

$$\begin{split} \Delta P_1 &= A [\cos(\Delta \pm \phi^{\rm HO}) - \cos(\Delta \pm \phi^{\rm LO})], \\ \Delta P_2 &= B [\sin(\Delta \pm \psi^{\rm HO}) - \sin(\Delta \pm \psi^{\rm LO})], \end{split}$$

$$A = 4s_{13}s_{12}c_{12}(\alpha\Delta)\sin\Delta, \qquad \phi = \delta_{13}, B = 2\sqrt{2}s_{14}s_{24}s_{13}\sin\Delta, \qquad \psi = \delta_{13} - \delta_{14},$$

benchmark value $\sin^2 \theta_{23} = 0.42$ (0.58) for LO (HO), i.e., $\eta = 0.08$, at the first oscillation maximum ($\Delta = \pi/2$), we have

$$\Delta P_0 \simeq 0.014$$
, $|A| \simeq 0.013$, $|B| \simeq 0.010$.

experiment can be sensitive to the octant only if the positive-definite difference ΔP_0 cannot be completely compensated for by a negative contribution coming from the sum of ΔP_1 and ΔP_2 .

SBL Reactor Experiments

Experiment	Reactor Power/Fuel	Overburden (mwe)	Detection Material	Segmentation	Optical Readout	Particle ID Capability
DANSS (Russia)	3000 MW LEU fuel	~50	Inhomogeneous PS & Gd sheets	2D, ~5mm	WLS fibers.	Topology only
NEOS (South Korea)	2800 MW LEU fuel	~20	Homogeneous Gd-doped LS	none	Direct double ended PMT	recoil PSD only
nuLat (USA)	40 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li doped PS	Quasi-3D, 5cm, 3-axis Opt. Latt	Direct PMT	Topology, recoil & capture PSD
Neutrino4 (Russia)	100 MW ²³⁵ U fuel	~10	Homogeneous Gd-doped LS	2D, ~10cm	Direct single ended PMT	Topology only
PROSPECT (USA)	85 MW ²³⁵ U fuel	few	Homogeneous ⁶ Li-doped LS	2D, 15cm	Direct double ended PMT	Topology, recoil & capture PSD
SoLid (UK Fr Bel US)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm multiplex	WLS fibers	topology, capture PSD
Chandler (USA)	72 MW ²³⁵ U fuel	~10	Inhomogeneous ⁶ LiZnS & PS	Quasi-3D, 5cm, 2-axis Opt. Latt	Direct PMT/ WLS Scint.	topology, capture PSD
Stereo (France)	57 MW ²³⁵ U fuel	~15	Homogeneous Gd-doped LS	1D, 25cm	Direct single ended PMT	recoil PSD

N. Bowden, AAP 2016
MiniBooNE

Hint from MiniBooNE: $\nu_{\mu} \rightarrow \nu_{e}, \, \bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$

p beam: Booster in FNAL, 8 GeV ν beam: π Decay-in-flight

$$\pi^{\pm} \rightarrow \mu^{\pm} + \nu_{\mu} (\bar{\nu}_{\mu})$$

Oscillation modes: $\nu_{\mu} \rightarrow \nu_{e}$, $\bar{\nu}_{\mu} \rightarrow \bar{\nu}_{e}$ Detection mode: $\nu_{e} + n \rightarrow e^{-} + p$ $\bar{\nu}_{e} + p \rightarrow e^{+} + n$ Baseline: 500 m Peak Energy: 600 / 400 MeV L/E : ~ 1 m / MeV

Event excess:

 ν mode - 162.0 \pm 47.8 (3.4 σ) $\bar{\nu}$ mode - 78.4 \pm 28.5 (2.8 σ)

Above 475 MeV, no event excess for ν mode

The reactor anomaly

G. Mention, M. Fechner, Th. Lasserre, Th. A. Mueller, D.Lhuillier, M. Cribier, and A. Letourneau, Phys. Rev. D 83, 073006 (2011)

Comparison among Different Experiments

IceCube Collaboration, Aartsen etal, arXiv:1707.07081v1 [hep-ph]

Mass Hierarchy Discovery with T2K and NOvA

Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644 [hep-ph]

CP-Violation Discovery with T2K and NOvA

Agarwalla, Prakash, Raut, Sankar, arXiv: 1208.3644 [hep-ph]

Resolving Octant of θ_{23} with T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective of δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective of δ_{CP} **Important message: T2K must run in anti-neutrino mode in future**

Octant Discovery with LBNE and LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

For octant: in their first phases, 4σ discovery for LBNO and 3σ for LBNE10

Present Understanding of the 2-3 Mixing Angle

Information on θ_{23} comes from: a) atmospheric neutrinos and b) accelerator neutrinos

In two-flavor scenario:
$$P_{\mu\mu} = 1 - \sin^2 2\theta_{\text{eff}} \sin^2 \left(\frac{\Delta m_{\text{eff}}^2 L}{4E}\right)$$

For accelerator neutrinos: relate effective 2-flavor parameters with 3-flavor parameters:

$$\Delta m_{\rm eff}^2 = \Delta m_{31}^2 - \Delta m_{21}^2 (\cos^2 \theta_{12} - \cos \delta_{\rm CP} \sin \theta_{13} \sin 2\theta_{12} \tan \theta_{23})$$

$$\sin^2 2\theta_{\text{eff}} = 4\cos^2 \theta_{13} \sin^2 \theta_{23} \left(1 - \cos^2 \theta_{13} \sin^2 \theta_{23}\right) \quad \text{where} \quad \frac{|U_{\mu3}|^2}{|U_{\tau3}|^2} = \tan^2 \theta_{23}$$

Nunokawa etal, hep-ph/0503283; A. de Gouvea etal, hep-ph/0503079

Combining bean and atmospheric data in MINOS, we have:

MINOS Collaboration: arXiv:1304.6335v2 [hep-ex]

 $\sin^2 2\theta_{\text{eff}} = 0.95^{+0.035}_{-0.036} (10.71 \times 10^{21} \text{ p.o.t}) \qquad \qquad \sin^2 2\bar{\theta}_{\text{eff}} = 0.97^{+0.03}_{-0.08} (3.36 \times 10^{21} \text{ p.o.t})$

Atmospheric data, dominated by Super-Kamiokande, still prefers maximal value of $\sin^2 2\theta_{eff} = 1 ~(\geq 0.94 ~(90\% ~C.L.))$

Talk by Y. Itow in Neutrino 2012 conference, Kyoto, Japan

Bounds on θ_{23} from the global fits

	Forero etal	Fogli etal	Gonzalez-Garcia etal
$\sin^2\theta_{23}$ (NH)	$0.427^{+0.034}_{-0.027} \oplus 0.613^{+0.022}_{-0.040}$	$0.386^{+0.024}_{-0.021}$	$0.41^{+0.037}_{-0.025} \oplus 0.59^{+0.021}_{-0.022}$
3σ range	0.36 ightarrow 0.68	$0.331 \rightarrow 0.637$	0.34 ightarrow 0.67
$\sin^2\theta_{23}$ (IH)	$0.600\substack{+0.026\\-0.031}$	$0.392^{+0.039}_{-0.022}$	Relative 1σ precision of 11%
3σ range	0.37 ightarrow 0.67	$0.335 \rightarrow 0.663$	

All the three global fits indicate for non-maximal 2-3 mixing!

In v_{μ} survival probability, the dominant term is mainly sensitive to $\sin^2 2\theta_{23}$! If $\sin^2 2\theta_{23}$ differs from 1 (as indicated by recent data), we get two solutions for θ_{23} : one in lower octant (LO: $\theta_{23} < 45$ degree), other in higher octant (HO: $\theta_{23} > 45$ degree)

In other words, if $(0.5 - \sin^2 \theta_{23})$ is +ve (-ve) then θ_{23} belongs to LO (HO)

This is known as the octant ambiguity of θ₂₃ ! Fogli and Lisi, hep-ph/9604415

 v_{μ} to v_{e} oscillation data can break this degeneracy!

The preferred value would depend on the choice of the neutrino mass hierarchy!

Octant – δ_{CP} degeneracy in $v_{\mu} \rightarrow v_{e}$ oscillation channel

 $P_{\mu e} = \beta_1 \sin^2 \theta_{23} + \beta_2 \cos(\hat{\Delta} + \delta_{CP}) + \beta_3 \cos^2 \theta_{23} \text{ (upto second order in } \alpha = \Delta_{21} / \Delta_{31} \text{ and } \sin 2\theta_{13})$

$$\beta_1 = \sin^2 2\theta_{13} \frac{\sin^2 \hat{\Delta} (1 - \hat{A})}{(1 - \hat{A})^2}, \quad \beta_3 = \alpha^2 \sin^2 2\theta_{12} \cos^2 \theta_{13} \frac{\sin^2 \hat{\Delta} \hat{A}}{\hat{A}^2}$$

$$\beta_2 = \alpha \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{13} \sin 2\theta_{23} \frac{\sin \hat{\Delta} \hat{A}}{\hat{A}} \frac{\sin \hat{\Delta} (1 - \hat{A})}{1 - \hat{A}}$$
$$A(\text{eV}^2) = 0.76 \times 10^{-4} \rho \ (\text{g/cc}) E(\text{GeV}) \qquad \hat{\Delta} = \Delta_{31} L/4E, \ \hat{A} = A/\Delta_{32}$$

Cervera etal, hep-ph/0002108; Freund etal, hep-ph/0105071

We demand that: $P_{\mu e}(\text{LO}, \delta_{\text{CP}}^{\text{LO}}) = P_{\mu e}(\text{HO}, \delta_{\text{CP}}^{\text{HO}})$ Above condition gives us: $\cos(\hat{\Delta} + \delta_{\text{CP}}^{\text{LO}}) - \cos(\hat{\Delta} + \delta_{\text{CP}}^{\text{HO}}) = \frac{\beta_1 - \beta_3}{\beta_2} (\sin^2 \theta_{23}^{\text{HO}} - \sin^2 \theta_{23}^{\text{LO}})$

For L=810 km & E=2 GeV, we get for NH and neutrino: $\cos(\hat{\Delta} + \delta_{CP}^{LO}) - \cos(\hat{\Delta} + \delta_{CP}^{HO}) = 1.7$

 $P_{\mu e}(\text{LO}, -116^\circ \le \delta_{\text{CP}} \le -26^\circ)$ is degenerate with $P_{\mu e}(\text{HO}, 64^\circ \le \delta_{\text{CP}} \le 161^\circ)$ Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant – δ_{CP} degeneracy in P_{ue} as a function of neutrino energy

At 2 GeV, $P_{\mu e}(\text{LO}, -116^\circ \leq \delta_{\text{CP}} \leq -26^\circ)$ is degenerate with $P_{\mu e}(\text{HO}, 64^\circ \leq \delta_{\text{CP}} \leq 161^\circ)$

As an example, $P_{\mu e}(LO, \delta_{CP} = -90^{\circ})$ is degenerate with $P_{\mu e}(HO, \delta_{CP} \approx 66^{\circ})$

Octant – δ_{CP} *degeneracy in T2K and NOvA*

Agarwalla, Prakash, Uma Sankar, arXiv:1301.2574

Octant – δ_{CP} *degeneracy in LBNE and LBNO*

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Bi-Event Plots for T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]; see also the talk by T. Nakadaira in this workshop

neutrino vs. anti-neutrino events for various octant-hierarchy combinations, ellipses due to varying δ_{CP} !

If $\delta_{CP} = -90^{\circ}$ (90°), the asymmetry between v and anti-v events is largest for NH (IH)

For NOvA & T2K, the ellipses for the two hierarchies overlap whereas the ellipses of LO are well separated from those of HO, the same is true for T2K as well!

Octant discovery: balanced neutrino & anti-neutrino runs needed in each experiment!

Allowed regions in test $\sin^2\theta_{23}$ - true δ_{CP} plane

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino & anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Allowed regions in test $\sin^2\theta_{23}$ - true δ_{CP} plane

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

Balanced neutrino & anti-neutrino runs from T2K are mandatory if HO turns out to be the right octant!

Resolving Octant of θ_{23} with T2K and NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

A 2σ resolution of the octant, for all combinations of neutrino parameters, becomes possible if we add the balanced neutrino and anti-neutrino runs from T2K (2.5 years v + 2.5 years anti-v) and NOvA (3 years v + 3 years of anti-v)

Important message: T2K must run in anti-neutrino mode in future!

Octant discovery in θ_{23} (true) – δ_{CP} (true) plane with T2K & NOvA

Agarwalla, Prakash, Sankar, arXiv:1301.2574 [hep-ph]

With Normal Hierarchy If $\theta_{23} < 41^{\circ}$ or $\theta_{23} > 50^{\circ}$, we can resolve the octant issue at 2σ irrespective δ_{CP} If $\theta_{23} < 39^{\circ}$ or $\theta_{23} > 52^{\circ}$, we can resolve the octant issue at 3σ irrespective δ_{CP}

Future Superbeam Expts with LAr Detector: LBNE & LBNO

Agarwalla, Prakash, Sankar, arXiv:1304.3251 [hep-ph]

Wide Band Beam \rightarrow Higher statistics \rightarrow cover several L/E values \rightarrow kill clone solutions

LAr Detector
> Excellent Detection efficiency at 1st & 2nd Osc. maxima, good background rejection!

High L \rightarrow High E \rightarrow High cross-section \rightarrow Less uncertainties in cross-section at high E

Few Remarks

Recent measurement of a moderately large value of θ_{13} signifies an important breakthrough in establishing the standard three flavor oscillation picture of neutrinos!

It has opened up exciting possibilities for current & future oscillation experiments!

T2K and NOvA are now poised to probe the impact of full 3 flavor effects to discover octant of θ_{23} (a first step towards CP violation discovery)!

Balanced v and anti-v runs from T2K & NOvA can establish the correct octant at 2σ for any combination of hierarchy and CP phase if $\sin^2\theta_{23} \le 0.43$ or ≥ 0.58

In its first phase, LBNE10 can resolve the octant ambiguity of θ_{23} around 3σ C.L.

In its first phase, LBNO can decide the correct octant of θ_{23} around 4σ C.L.

Large value of θ_{13} allows us to explore Octant with atmospheric neutrinos! ICAL@INO experiment, IceCube Deepcore, PINGU will play a vital role!

Oscillation Probability in T2K

Oscillation Probability in NOvA

T2K and NOvA Event Spectra

T2K and NOvA Bi-events Plot

MH Discovery (T2K+NOvA)

CPV Discovery (T2K+NOvA)

Bi-Probability in DUNE

Bi-Probability in DUNE

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

CP-violation Searches at DUNE

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)

Reconstruction of CP Phase at DUNE

The error on δ_{14} is large if θ_{34} is 30 degree

Agarwalla, Chatterjee, Palazzo (arXiv:1603.03759)