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Part |: Index theorem

(“Number" of eigen-spinors of Dirac operator with zero eigenvalue)

Let’s start from the basics of the Dirac operator
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can define Dirac fermion on the manifold

» even-dimensional, orientable manifold to define chirality

72”4—1 = (2”)' 6/1‘1'”“2"7“‘1 T 7M2n
(vont1)? = 1

So the eigenvalue of v2,41 is +1. It is called chirality.
On an even-dimensional, orientable manifold one can define
chiral fermion on the manifold.



» consider the Dirac eigenvalue problem

D=1

[ is the Dirac operator in presence of gauge and/or spin
connection



consider the Dirac eigenvalue problem

D=1

[ is the Dirac operator in presence of gauge and/or spin
connection

Define Chiral spinors

L F v2n
Y = Py, Pi= <3Fzz+1>



» consider the Dirac eigenvalue problem

D=1

[ is the Dirac operator in presence of gauge and/or spin
connection

» Define Chiral spinors

1 n
Yy = Py ; Py = <3F72+1>
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consider the Dirac eigenvalue problem

D=1

[ is the Dirac operator in presence of gauge and/or spin
connection

Define Chiral spinors

L F v2n
Y = Py, Pi= <3Fzz+1>

action of Dirac operator flips chirality
PPL=P:D  —  Dys=2A¢x

for every eigenspinor of non-zero eigenvalue and positive
chirality, there exists an eigenspinor of same eigenvalue and
negative chirality.
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Topological quantity
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Application of index theorem

» Anomaly is (controlled) quantum violation of a classical
symmetry

» Massless Dirac fermion enjoys the following symmetry (Chiral
symmetry)

V(x) — exp[iv2nt+1 0] W(x)

> However, the path integral measure doesn't obey this
symmetry. Non-invariance of the measure comes only from
the zero mode of the Dirac operator and hence controlled by
the index theorem.
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Derivation using supersymmetry

» A quantum mechanical system is defined a Hamiltonian
H|V) = E|V)

» A Supersymmetric QM system is actually a pair* of Quantum
mechanical system.

b) . [f)
It is defined by a super-charge
R=H . Q=) . QIf)=|b)

» For supersymmetric systems, we can define Witten index
which roughly counts the number of bosons minus the
number of fermions

W(B) = Tr|(~1)F "]



A path integral derivation
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A path integral derivation
(Witten, Alvarez-Gaume, Friedan, Windey)

» Consider super-symmetric quantum mechanics with one real
super-charge whose (bosonic) target space is the compact
manifold

1 dxldx) L [ dP dxk .
z/dt [g”(x) gt di 0¥ ( el S

Witten index = Tr {(—I)FefﬂH] = Dirac index



Relation between spacetime variable and world-line variables

D «— Q
B> «— H
,72n+1 PR (_1)F
index() <«— W/(o0)= W(0)

where



Dirac index for manifold with boundary

IxN

Atiyah-Patodi-Singer index
theorem
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Not good for index problem.
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Boundary condition |

» Any local boundary doesn’t preserve chiral current and hence
not good for index problem

» APS invented a non-local boundary condition to define the
index problem

» However, this boundary condition can be thought of as a
euclidean continuation of Feynman ie (scattering) boundary
condition.
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Boundary condition Il

» For a particular choice of the gamma matrices, the Dirac
operator near the boundary can be written as

o "]l

» (say) We diagonalize the boundary operator B
Bx, = Ax,

» Focus on zero modes (E = 0). Locally near the boundary

Wi(u) =) exp[FAu]x,
A
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Boundary condition Il

add a trivial cylinder

Y 0

APS boundary condition «— L, normalizability on M
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1 invariant

Given an operator B and its eigenvalues
Bx, =Ax, , AeR

We can define the following quantity which defines the spectral
asymmetry (A # 0)

n=7 _sgn(\)
A
Need to introduce a regulator
A sgn(\)
Naps(s) = Z s = Z BE
A A
ma(8) = D sen(\)erfe(|A1V/5)
A
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7 is not a topological quantity - can change under deformation.

it appears in

1. time-reversal-parity anomaly

2. fermion fractionzation - charge of the vacuum in presence of
soliton

3. spectral flow
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Question

Is there a path-integral derivation of
APS index theorem 7

How to put field space boundary condition in path
integral formalism?
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Revisiting the basics

» Let's start from the basic defn of Witten index

W(B) = Tr|(~1)Fe "]

» For compact manifold (with/without boundary), the spectrum
is discrete. One can use supersymmetry to prove W(j3) gets
contribution only from zero energy states and hence

» Index of an operator is defined as

7 = W(o0)
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Non-compact extension

We add the trivial cylinder. This does the following thing

» introduces continuum of scattering states

» The states of the compact manifold is simply the bound states
of the non-compact manifold

» The definition of the Witten index has to be appropriately
modified. One needs to use the concept of Gelfand triplet.

» Supersymmetric cancellation of states doesn’t hold scattering
states; Witten index depends on (3.



Assumption: we assume that the continuum is separated from
zero

E Scattering states
(Continuum)

Bound states




W(B) = Trbound |:(_1)Fe76H:| + Trscattering |:(_1)F676Hi|

Since we assumed that the scattering state is separated from zero,
VY . F_—8H

W(o) = fim Tr,,,,,|[(~1)'e ]

So this gives the index of compact manifold. However it is more
difficult to compute. So rewrite the above equation as

W(x) = W(0)+[W(oo)—W(0)}

1

1R



Computing 7 invariant

We start from our guess

n(B) = 2(W(B)— W(c0))

= 2Z/dk pi(k

Now the difference of density of state is related to deference of

(k)} e BE(K)

phase shift
1d

62 (k) are the phase shifts.



Let the asymptotic form of the scattering wave functions is
. . A o
wik(u) ~ C:>|\: elku + eléi(k) iku

where 07 (k) are the phase shifts.
Now one can use supersymmetry to determine the difference of
phase shift just from the asymptotic data

262 (k) — 262 (k) = —i In <:’;J_ri> +7

So the final result is

g
E)\:sgn()\)Erfc <|/\|\/g>



Computing AS piece

Double it to get a compact manifold without boundary

<|
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» We proved APS theorem using the scattering theory

» It would be interesting to prove APS theorem in a way similar
in spirit to the proof by Alvarez-Gaume,...

» We did notice that APS boundary condition is consistent with
world-line supersymmetry (and so is anti-APS 1)



Part II: Mock modular form
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Modular form

Modular group SL(2,7Z):

ar + b
—
cT +d

, ad —bc=1 a,b,c,d eZ

Modular form f(7):

» Holomoprhic on the upper half plane Im7 > 0
» Obeys the following relation

f (Zig) = (c7 + d)* f(7)
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Mock-modular form (Ramanujan, Zwegers,
Dabholkar-Murthy-Zagier, ...)

Consider a pair h, g such that
» h is holomorphic but not modular
> h=nh + g is modular but not holomorphic
> his called mock-modular form

» g is called the shadow
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Three clues

» The elliptic genus of a compact (without boundary) CFT can
be written as a sum of Dirac indices.

» The elliptic genus of a non-compact CFT is (mixed-)mock
modular.

» Dirac indices of non-compact manifold is regular dependent
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Is there a connection 7

index()

h(r,7) =

Only these pieces are there for compact manifold without

boundary; they are 8 (7) independent

_I_



Is there a connection 7

index(P) = [, a(x)

h(r,7) = h(r) +

Sensitive only to the boundary



Don't know in general |

However, we observe some
connections in case of cigar !



Cigar

Cigar is a two dimensional non-compact manifold. The metric is
given by

ds®> = k (dp? + tanh? p di)?)

1 is a periodic direction with period 27. The Dirac operator near
the boundary takes the form

iD = 4(i0, — wK,) 4+ 1709 — w Ky)

. 1 -1 0
— r = - 2
= iy [8, tanh 7 < 0 1) (i0p — w k tanh“ r)



Lots of work on Cigar Elliptic genus by Various people
Ashok, Doroud, Troost; Murthy,...

We computed from supersymmetric sigma model.



Observations

The EG of Cigar SCFT is a Mock Jacobi form of weight 1/2.

ST [ (- ) e (VAT - )

n3(7)

—sgn(nim 7)© [w (% - W)] } g (k) /8K gt wk )2 4k Uy



Observations

In the 7 — oo limit we obtain
x(7,7|z) =0

In the 7 — 0 limit we obtain

01(m1, 2 1 n i Otk
—/717((7_11)3)2 [(—sgn(n) + 588 (E - W>] g2mimnw,, =

w,n

But we know the AS piece vanishes in 2 dimensions

One can consider the radial limit (7 — 0T) of the non-holomophic
part to obtain (vector-valued) ‘quantum modular forms’ (in this
case the weight is 1/2)



SUmmary

it
v

Q>
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Thank you



