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Part I: Index theorem

(“Number” of eigen-spinors of Dirac operator with zero eigenvalue)

Let’s start from the basics of the Dirac operator



I euclidean, compact (without boundary), spin manifold

can define Dirac fermion on the manifold

I even-dimensional, orientable manifold to define chirality

γ2n+1 =
1

(2n)!
εµ1···µ2nγ

µ1 · · · γµ2n

(γ2n+1)2 = 1

So the eigenvalue of γ2n+1 is ±1. It is called chirality.
On an even-dimensional, orientable manifold one can define
chiral fermion on the manifold.
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I consider the Dirac eigenvalue problem

/D ψ = λψ

/D is the Dirac operator in presence of gauge and/or spin
connection

I Define Chiral spinors

ψ± = P±ψ , P± =

(
1∓ γ2n+1

2

)
I action of Dirac operator flips chirality

/D P± = P∓ /D ←→ /Dψ± = λψ∓

I for every eigenspinor of non-zero eigenvalue and positive
chirality, there exists an eigenspinor of same eigenvalue and
negative chirality.
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the number of positive (negative) chirality zero mode n+ (n−).

what is the value of the following quantity (Dirac index) ?

index ( /D) = n+ − n−

Atiyah-Singer index theorem
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Atiyah-Singer index theorem

Consider an even-dimensional, orientable, compact manifold (with
no boundary) M. Let the metric on M be gµν . And the Riemann
tensor constructed out of metric is

Rab
µν dx

µ ∧ dxν

Then the Dirac index in D = 4, is given by

− 1

24

∫
M

trR ∧ R

16π2

Topological quantity
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Application of index theorem

I Anomaly is (controlled) quantum violation of a classical
symmetry

I Massless Dirac fermion enjoys the following symmetry (Chiral
symmetry)

Ψ(x) −→ exp [i γ2n+1 θ] Ψ(x)

I However, the path integral measure doesn’t obey this
symmetry. Non-invariance of the measure comes only from
the zero mode of the Dirac operator and hence controlled by
the index theorem.
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Derivation using supersymmetry

I A quantum mechanical system is defined a Hamiltonian

H|Ψ〉 = E |Ψ〉

I A Supersymmetric QM system is actually a pair? of Quantum
mechanical system.

|b〉 , |f 〉

It is defined by a super-charge

Q2 = H , Q|b〉 = |f 〉 , Q|f 〉 = |b〉

I For supersymmetric systems, we can define Witten index
which roughly counts the number of bosons minus the
number of fermions

W (β) = Tr
[
(−1)Fe−βH

]
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A path integral derivation
(Witten, Alvarez-Gaume, Friedan, Windey)

I Consider super-symmetric quantum mechanics with one real
super-charge whose (bosonic) target space is the compact
manifold

1

2

∫
dt

[
gij(x)

dx i

dt

dx j

dt
+ i δab ψ

a

(
dψb

dt
+ ωakb

dxk

dt
ψb

)]
I

Witten index ≡ Tr
[
(−1)Fe−βH

]
= Dirac index
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Relation between spacetime variable and world-line variables

/D ←→ Q
/D
2 ←→ H

γ2n+1 ←→ (−1)F

index( /D) ←→ W (∞) = W (0)

where
W (β) = TrH (−1)F e−βH



Dirac index for manifold with boundary

M N

I×N

Atiyah-Patodi-Singer index
theorem



Variation problem of the Dirac action

The boundary term for the variation of the Dirac action is
(roughly) of the form∫

∂M

[
ψ+ · δψ+ − ψ− · δψ−

]
One can impose (local) boundary condition

ψ+

∣∣∣
∂M

= ±ψ−
∣∣∣
∂M

Not good for index problem.
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Boundary condition I

I Any local boundary doesn’t preserve chiral current and hence
not good for index problem

I APS invented a non-local boundary condition to define the
index problem

I However, this boundary condition can be thought of as a
euclidean continuation of Feynman iε (scattering) boundary
condition.
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Boundary condition II

I For a particular choice of the gamma matrices, the Dirac
operator near the boundary can be written as[

0 ∂u + B
−∂u + B 0

] [
Ψ+

Ψ−

]
=
√
E

[
Ψ+

Ψ−

]
I (say) We diagonalize the boundary operator B

B χ
λ

= λχ
λ

I Focus on zero modes (E = 0). Locally near the boundary

Ψ±(u) =
∑
λ

exp [∓λ u]χ
λ
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Boundary condition III

add a trivial cylinder

M̂

APS boundary condition ←→ L2 normalizability on M̂
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η invariant

Given an operator B and its eigenvalues

B χ
λ

= λχ
λ

, λ ∈ R

We can define the following quantity which defines the spectral
asymmetry (λ 6= 0)

η =
∑
λ

sgn(λ)

Need to introduce a regulator

ηAPS(s) =
∑
λ

λ

|λ|s+1
=
∑
λ

sgn(λ)

|λ|s

ηPI(β) =
∑
λ

sgn(λ) erfc
(
|λ|
√
β
)
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η is not a topological quantity - can change under deformation.

it appears in

1. time-reversal-parity anomaly

2. fermion fractionzation - charge of the vacuum in presence of
soliton

3. spectral flow



η is not a topological quantity - can change under deformation.

it appears in

1. time-reversal-parity anomaly

2. fermion fractionzation - charge of the vacuum in presence of
soliton

3. spectral flow



η is not a topological quantity - can change under deformation.

it appears in

1. time-reversal-parity anomaly

2. fermion fractionzation - charge of the vacuum in presence of
soliton

3. spectral flow



η is not a topological quantity - can change under deformation.

it appears in

1. time-reversal-parity anomaly

2. fermion fractionzation - charge of the vacuum in presence of
soliton

3. spectral flow



APS index theorem

index( /D) =
∫
Mα(x)− 1

2η



Question

Is there a path-integral derivation of
APS index theorem ?

How to put field space boundary condition in path
integral formalism?
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Revisiting the basics

I Let’s start from the basic defn of Witten index

W (β) = Tr
[
(−1)Fe−βH

]

I For compact manifold (with/without boundary), the spectrum
is discrete. One can use supersymmetry to prove W (β) gets
contribution only from zero energy states and hence

W (β) = W (0) = W (∞)

I Index of an operator is defined as

I ≡W (∞)
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Non-compact extension

We add the trivial cylinder. This does the following thing

I introduces continuum of scattering states

I The states of the compact manifold is simply the bound states
of the non-compact manifold

I The definition of the Witten index has to be appropriately
modified. One needs to use the concept of Gelfand triplet.

I Supersymmetric cancellation of states doesn’t hold scattering
states; Witten index depends on β.
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Assumption: we assume that the continuum is separated from
zero

Scattering states
(Continuum)

Bound states

E



Ŵ (β) = Tr
bound

[
(−1)Fe−βH

]
+ Trscattering

[
(−1)Fe−βH

]
Since we assumed that the scattering state is separated from zero,

Ŵ (∞) = lim
β→∞

Tr
bound

[
(−1)Fe−βH

]
So this gives the index of compact manifold. However it is more
difficult to compute. So rewrite the above equation as

Ŵ (∞) = Ŵ (0) +
[
Ŵ (∞)− Ŵ (0)

]
' AS− 1

2
η



Computing η invariant

We start from our guess

η(β) := 2(Ŵ (β)− Ŵ (∞))

= 2
∑
λ

∫
dk
[
ρλ+(k)− ρλ−(k)

]
e−βE(k)

Now the difference of density of state is related to deference of
phase shift

ρλ+(k)− ρλ−(k) =
1

π

d

dk

[
δλ+(k)− δλ−(k)

]
.

δλ±(k) are the phase shifts.



Let the asymptotic form of the scattering wave functions is

ψλ k± (u) ∼ cλ±

[
e iku + e iδ

λ
±(k)−iku

]
where δλ±(k) are the phase shifts.
Now one can use supersymmetry to determine the difference of
phase shift just from the asymptotic data

2δλ+(k)− 2δλ−(k) = −i ln

(
ik + λ

ik − λ

)
+ π

So the final result is

∑
λ

sgn(λ)Erfc

(
|λ|
√
β

2

)



Computing AS piece

Double it to get a compact manifold without boundary

M



I We proved APS theorem using the scattering theory

I It would be interesting to prove APS theorem in a way similar
in spirit to the proof by Alvarez-Gaume,...

I We did notice that APS boundary condition is consistent with
world-line supersymmetry (and so is anti-APS !)
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Part II: Mock modular form



Modular form

Modular group SL(2,Z):

τ −→ aτ + b

cτ + d
, ad − bc = 1 a, b, c , d ∈ Z

Modular form f (τ):

I Holomoprhic on the upper half plane Imτ > 0

I Obeys the following relation

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ)



Modular form

Modular group SL(2,Z):

τ −→ aτ + b

cτ + d
, ad − bc = 1 a, b, c , d ∈ Z

Modular form f (τ):

I Holomoprhic on the upper half plane Imτ > 0

I Obeys the following relation

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ)



Modular form

Modular group SL(2,Z):

τ −→ aτ + b

cτ + d
, ad − bc = 1 a, b, c , d ∈ Z

Modular form f (τ):

I Holomoprhic on the upper half plane Imτ > 0

I Obeys the following relation

f

(
aτ + b

cτ + d

)
= (cτ + d)k f (τ)



Mock-modular form (Ramanujan, Zwegers,
Dabholkar-Murthy-Zagier, ...)

Consider a pair h, g such that

I h is holomorphic but not modular

I ĥ = h + ḡ is modular but not holomorphic

I h is called mock-modular form

I g is called the shadow
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Three clues

I The elliptic genus of a compact (without boundary) CFT can
be written as a sum of Dirac indices.

I The elliptic genus of a non-compact CFT is (mixed-)mock
modular.

I Dirac indices of non-compact manifold is regular dependent
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Is there a connection ?

Let’s compare two formulae

index( /D) =
∫
Mα(x)− 1

2η

ĥ(τ, τ̄ ) = h(τ ) + ḡ(τ̄ )
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partition functions - counts supersymmetric states



Is there a connection ?

index( /D) =
∫
Mα(x)− 1

2η
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Only these pieces are there for compact manifold without
boundary; they are β (τ̄) independent



Is there a connection ?

index( /D) =
∫
Mα(x)− 1

2η

ĥ(τ, τ̄ ) = h(τ ) + ḡ(τ̄ )

Sensitive only to the boundary



Don’t know in general !

However, we observe some
connections in case of cigar !



Cigar

Cigar is a two dimensional non-compact manifold. The metric is
given by

ds2 = k (dρ2 + tanh2 ρ dψ2)

ψ is a periodic direction with period 2π. The Dirac operator near
the boundary takes the form

i /D = γr (i∂r − w Kr ) + γθ(i∂θ − w Kθ)

= iγr
[
∂r −

1

tanh r

(
−1 0
0 1

)
(i∂θ − w k tanh2 r)

]



Lots of work on Cigar Elliptic genus by Various people
Ashok, Doroud, Troost; Murthy,...

We computed from supersymmetric sigma model.



Observations

The EG of Cigar SCFT is a Mock Jacobi form of weight 1/2.

−i ϑ1(τ, z)

η3(τ)

∑
w

∑
n

[
1

2
sgn

(n
k
− w

)
Erfc

(√
kπτ2

∣∣∣w − n

k

∣∣∣)
−sgn(n im τ) Θ

[
w
(n
k
− w

)] ]
q−(n−wk)

2/4kq(n+wk)2/4kyJL



Observations

In the τ2 →∞ limit we obtain

χ̂(τ, τ̄ |z) = 0

In the τ2 → 0 limit we obtain

−i θ1(τ1, z)

η(τ1)3

∑
w ,n

[
(−sgn(n) +

1

2
sgn

(n
k
− w

)]
e2πiτ1nwy

n+wk
k

But we know the AS piece vanishes in 2 dimensions
One can consider the radial limit (τ2 → 0+) of the non-holomophic
part to obtain (vector-valued) ‘quantum modular forms’ (in this
case the weight is 1/2)



Summary



Future directions

1. To Extend the proof APS index theorem using scattering for a
more general type of manifolds

2. Is it possible to make the connection non-compact elliptic
genus and APS index precise

3. Given a Dirac operator on a manifold with boundary, we know
how to compute and boundary operator and it’s eta invariant.
Similarly, given a non-compact CFT, is it possible to write
down systematic steps to compute the shadow?

4. ...
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Thank you


