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Introduction



Fundamental physics…

General relativity: spacetime  

Quantum Field Theory: elementary particles

•The standard model of elementary particle physics 
(QFT), 

•The standard model of cosmology (GR + QFT).



The Standard Model of particles
(1) Spacetime symmetry: 

✦ Spacetime symmetry group is Poincare group,
✦ All fields irreducible representation of Lorentz group,
✦ Allow only spins 0, 1/2 and 1;

(2)  Internal symmetry:
✦  SM is a gauge theory (local, continuous internal symmetries),
✦  Internal (gauge) symmetry group:
✦  Thus, spin 1 gauge fields in adjoint representation;

(3) Spinors:
✦ Left Handed Weyl fermions in three copies of the representation

(4) Scalar:
✦  A complex scalar in representation

(5) Lagrangian:
• The most general, consistent with symmetries,
•  Ensure that EW symmetry is spontaneously broken,
• Only one dimension-full parameter: weak scale. 

3.4 The prescription for creating the world

1. Pick the group of spacetime symmetries of the theory:

The arena for the theory to act is d = 4, Minkowski spacetime. The group of isometries of Minkowski
spacetime is the Poincare group. This is a ten parameter non-abelian non-compact Lie group. All fields
of SM are in irreducible representations of the proper Lorentz group. In SM, we only have fields of spin
0, 1/2 and 1.

2. Pick the group of internal symmetries of the theory (i.e. the gauge group):

SM is a gauge theory, this means that (i) there exist internal symmetries, (ii) these symmetries are
continuous (i.e. all the symmetry transformations form a Lie group), (iii) they are also gauged (i.e.
local). The internal symmetry group of SM is the direct product group of three compact and simple
Lie groups (recall that the Cartan classification tells us all the possible compact, simple Lie groups).
The internal symmetry group of the SM is SU(3) ⇥ SU(2) ⇥ U(1). All fields of the theory turn up
in irreducible representations of this group. Recall that irreducible representations of a group which is a
direct product of two or more groups can be found be taking tensor products of irreducible representations
of individual groups. The number of generators (of each individual group) shall be the dimension of the
adjoint representation. When we demand that the corresponding internal symmetry be gauged (i.e. made
local), we shall need spin 1 fields, called the gauge fields which shall turn up in the adjoint representation
of the symmetry group. We shall thus have 8(= 32 � 1) SU(3) gauge fields Ga

µ

, 3(= 22 � 1) SU(2) gauge
fields Aa

µ

and 1 U(1) gauge field B
µ

.

3. The representation of spinors:

Representations of the Lie algebra of the internal symmetry group can be parametrized as (r, `, q), where
r specifies an irreducible representation of SU(3), ` specifies an irreducible representation of SU(2), and
q is a rational number which specifies the representation of U(1). Also recall that we can always write
all fermions in terms of left-handed Weyl fermions. SM has Left-handed Weyl fields (the ones in the first
generation are called q, ū, d̄, `, ē) in three copies (i.e. tensor product) of the representation 4
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In this notation, the SU(3) gauge fields Ga

µ

(called Gluons) are in the representation (8, 1, 0), the SU(2)
gauge fields Aa

µ

are in the representation (1, 3, 0) and the U(1) gauge field B
µ

is in the representation
(1, 1, 0).

4. The representation of scalar: Introduce a complex scalar field (called the Higgs field) in the represen-
tation

(1, 2,�1

2
) , (3)

of the (gauged) symmetry group.

5. The Lagrangian

Write the most general Lagrangian which includes all terms of mass dimension four or less that are allowed
by the gauge symmetries (point (2) above) and Lorentz invariance (point (1) above). Thus, there will be

(a) the kinetic terms for the gauge fields,

(b) the kinetic terms for the spinor fields, gauging of the internal symmetries shall cause the partial
derivatives to get replaced by gauge covariant derivatives,

4This specification can be easily understood in terms of the following principles: (i) all quarks are in triplet of SU(3) and all
leptons are in singlets of SU(3), (ii) all LH quarks and LH leptons are doublets of SU(2) while all RH quarks and leptons are in
singlets of SU(2), (iii) all U(1) charges must be the same for all members of the same multiplet.
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The Standard Model of Cosmology
At early enough times (T ~ few MeV)

(1) Gravity: General Relativity
(2) To leading order: spacetime geometry is spatially flat FRW metric (space-

like hypersurfaces: homogeneous, isotropic, spatially flat),
(3) Matter

✦ Dark Matter: cold, collisionless, 
✦ cosmological constant (with a very tiny value:                             ),
✦ SM particles: photons, neutrinos (and anti-neutrinos), electrons (and 

positrons), protons and neutrons
(4) Initially,

• baryon to photon ratio is
• asymmetry in neutral leptons negligible
• asymmetry in charged leptons s.t. the net electric charge is zero.

(5) At sub-leading order: scalar metric perturbations: 
• adiabatic, 
• Gaussian
• nearly scale-invariant (tilted red)

Chapter 1

The standard model of cosmology

Let us assume that gravity is described by General Relativity. The standard model of cosmology asserts that, at early
enough times (T ⇠O (10)MeV),

1. To leading order, the spacetime geometry is given by spatially flat FRW metric (i.e. there exist ways of slicing
the spacetime into space-like hypersurfaces which are homogeneous, isotropic and flat),

2. Matter is a mixture of ideal fluids

(a) Dark Matter: a non-dissipative fluid of collisionless, stable non-relativistic particles (cold) particles;

(b) cosmological constant (with a very tiny value: `2
Pl⇤⇡ 3⇥10�122),

(c) Particles of the standard model (at T ⇠O (10)MeV) 1 :

i. photons (�), neutrinos (⌫
e

,⌫µ,⌫⌧) and anti-neutrinos,

ii. electrons and positrons,

iii. protons and neutrons.

3. Initially, baryon to photon ratio is O (10�9), the asymmetry among neutral leptons is also negligible but the
asymmetry among charged leptons is determined by the requirement that the net electric charge is zero 2 .

4. At sub-leading order, there exist scalar metric perturbations: adiabatic, Gaussian with a nearly scale-invariant
tilted red power spectrum.

Cosmological parameters: A

s

, n

s

, baryon to photon ratio, Dark Matter density;
Observational: ⌦

b

h

2, ⌦
c

h

2, 100✓
M C

(related to angular size of sound horizon), ⌧ (optical depth of re-ionization),
n

s

, ln(1010
A

s

).
These initial conditions seem to give rise to the kind of universe we observe around us. E.g. (i) the above initial

conditions can be used to evaluate the primordial abundances of chemical elements which agrees very well with
observations, (ii) the above initial conditions imply that the universe must be filled with a mostly isotropic back-
ground of blackbody radiation with temperature anisotropies of the order of 10�5, (iii) the angular power spectra
of temperature and polarization anisotropies of the background radiation have a very specific form which can be

1Notice that in SM, the only stable particles are: (i) photons, (ii) neutrinos (and anti-neutrinos), (iii) electrons (and positrons), (iv) certain
combinations of u and d quarks (forming protons and the stable nuclei). Thus, if the universe lives long enough (determined by the amount of
vacuum energy), and provided that there is an initial baryon and lepton asymmetry, the only stable constituents at late times are: (a) photons,
(b) neutrinos (and anti-neutrinos), (c) electrons, (d) certain combinations of u and d quarks (forming protons and the stable nuclei), (e) dark
matter, (f) vacuum energy.

2The symmetry group of the SM at low energies is SU (3)
c

⇥U (1)EM . Moreover, at low energies, the sphaleron processes are negligible, so,
baryon number and the three lepton numbers are also individually conserved. Since the rank of SU (3) is 2, there are thus seven conserved
quantities for SM at low energies which need to be specified.
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New fundamental physics?

* Neutrino masses 
* Baryon Asymmetry 
* Dark Matter 
* Dark Energy 
* Inflation 
* vacuum stability

* UV sensitivity (SM Higgs, Vacuum 
energy, inflation), 

* strong CP problem, 
* the flavour problem, 
* precision electroweak constraints, 
* Why this gauge group?  
* Why 3 generations?  
* Why 1+3 spacetime dimensions? 
* Broadly: why the SM and cosmological 

parameters have the values they have? 

* graviton-graviton scattering at Planck scale, 
* Resolving the gravitational singularities, 
* UV finiteness? 
* Hints from BH physics? e.g. holography, information loss paradox, calculation of 

entropy of BHs from microphysics; 
* Other lessons: given GR and QM, no operational way to measure length scales 

smaller than Planck length etc.
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Why this geometry?

Why do we find ourselves in a spatially flat FRW 
(homogeneous and isotropic spacetime)?



Every realistic microscopic theory is specified 
by… 
� Gauge group, 
� Representation of fermions, 
� Representation of scalars, and,  
� the Scalar Potential

From microphysics…



Cosmic inflation

Hot 
Big Bang!

Additionally: why 
perturbations of the 
kind posited in SM!







Large field inflation

(k) From fields in 10 D type IIA sugra to fields in our setup;

(l) N = 1 supergravity in d = 1 + 3; finding VF ; Kahler potential for our case,

(m) At classical level, all scalars except RR axions are fixed; non-perturbative correction; AdS vacua;

(n) Low energy e↵ective theory of axions and instantons;

(o) caution: won’t talk about other scalar fields e.g. open string moduli (e.g. brane position);

5. Large field excursion and string compactifications

(a) General arguments:

i. Important remark: Perturbative and non-perturbative contributions,

ii. Important remark: controlled set-up (desired hierarchy of scales),

iii. Important remark: explicit constructions,

iv. the decay constant of fundamental axion must be sub-Planckian:

A. Baumann and Me-Allister argument? f/Mp ⇡ ↵0/Vol
6

1/3;

v. Can ENI be realised in stringy setups? A rough argument;

(b) KNP mechanism and a way to realise it;

(c) Palti’s argument: two-axion field space, perturbatively flat direction, single axion and two instantons,
adjusting fluxes doesn’t quite help;

(d) My result:

(e) Possible issues and invitation to swampland etc;

6. Summary

5.2.3 Talk: equations

�2

⇣(k) = As

✓
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kp

◆ns�1
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24
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Negligible: 
• running,  
• non-Gaussianity,  
• non-adiabatic perturbations etc.



Too many models?



Some conceptual 
issues
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heavy

The eta problem

Why is the inflaton 
potential so flat?



UV sensitivity

(+4290)


+ (-4673218943712894637281978923)


+ (+47583920542)


+ (+7458392157829013278190547825)


+ (-321)


+(unknown, but large contributions)


= order (1) number e.g. 3

Possible but extremely peculiar!
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Vacuum energy

Higgs mass

boson

fermion helicity

UV sensitivity is ubiquitous…
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Lyth bound and future CMB observations…
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Current 
observational bound:

In future, the bounds 
will get tighter.

Planckian  
field excursion!



Wilsonian effective theory

Specify: 

‣ Symmetries and field content, 
‣ UV cut-off and Wilson coefficients.
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‣ Low energy experiments, irrelevant operators, 
‣ Relevant operators sensitive, 
‣ Inflaton rolls beyond the cut-off! 
‣ How come the later terms not important? 
‣ Symmetries of UV theory could be helpful.



Why large field inflation?

‣ Simple potentials, 
‣ No tuning of initial field value and time derivative, 
‣ Testable (in near future).

For inflaton charged under a gauge symmetry… 
‣ field value and potential gauge dependent: how 
trustworthy is Wilsonian argument? 
‣ Vacuum energy is gauge independent
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What could possibly go wrong?
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The effective 
theory contains only inflaton 

and gravity

New particles below the cut-off!

�m2

H ⇠ ↵
GUT

M2

GUT

h⇢i
vac

= +
m4

64⇡2

ln

✓
m2

µ2

◆
, real scalar

h⇢i
vac

= � m4

16⇡2

ln

✓
m2

µ2

◆
, Dirac fermion

h⇢i
vac

= ± s

m4

16⇡2

ln

✓
m2

µ2

◆

L
e↵

[�] = L`[�] +
1X

i=1

ci
�4+2i

⇤2i
0

+ di
(@�)2�2i

⇤2i
0

+ ei
(@�)2(i+1)

⇤4i
0

+ · · · (22)

��

M
Pl

⇡
⇣ r

0.01

⌘
1/2

(23)

L � y ̄ � (24)

V 1/4

M
Pl

⇡ 10�2

⇣ r

0.1

⌘
1/4

(25)

M2

n = M2 +
n2

R2

(26)

V 1/4

M
Pl

⇡ 10�2

⇣ r

0.1

⌘
1/4

(27)

V (�) (28)

25

�m2

H ⇠ ↵
GUT

M2

GUT

h⇢i
vac

= +
m4

64⇡2

ln

✓
m2

µ2

◆
, real scalar

h⇢i
vac

= � m4

16⇡2

ln

✓
m2

µ2

◆
, Dirac fermion

h⇢i
vac

= ± s

m4

16⇡2

ln

✓
m2

µ2

◆

L
e↵

[�] = L`[�] +
1X

i=1

ci
�4+2i

⇤2i
0

+ di
(@�)2�2i

⇤2i
0

+ ei
(@�)2(i+1)

⇤4i
0

+ · · · (22)

��

M
Pl

⇡
⇣ r

0.01

⌘
1/2

(23)

L � y ̄ � (24)

V 1/4

M
Pl

⇡ 10�2

⇣ r

0.1

⌘
1/4

(25)

M2

n = M2 +
n2

R2

(26)

2⇡R =

Z
1

0

p
g
55

dx5 (27)

V 1/4

M
Pl

⇡ 10�2

⇣ r

0.1

⌘
1/4

(28)

V (�) (29)

25

scalar under 4D 
transformations



Quantum Gravity issues?
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Inflaton could mediate a force  
weaker than gravity!



• Future observations would put tight constraints on 
large field inflation, 

• Inflation appears to be a sensible mechanism, 

• But harder to come up with concrete models, 

• Large field inflation is  

• trivial if one does it carelessly, 

• almost impossible if one does it carefully.

Punchline…



Kim-Nilles-Peloso (KNP) 
Mechanism in QFT



Axion potential
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‣ Compact field space, 
‣ Natural inflation: axion is the inflaton, 
‣ For large f, large field inflation, typically, f is Planckian
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Global symmetries

‣ Natural inflation: axion is a PNGB of a spontaneously 
broken (and anomalous) global U(1) symmetry, 
‣ Super-Planckian f could be untrustworthy, 
‣ No continuous global symmetries in QG, 
‣ Gravitational instantons? 
‣ When f can be deduced from QG, it is sub-Planckian.
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3 Updates on 13 January 2017

1. Broader problem: understanding large field inflation in a framework such as string theory which provides
a UV completion of GR; for a detailed discussion of this issue, check out the book by Baumann and Mc
Allister;

In particular, does string theory provide universal constraints on large field inflation?
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stabilized supersymmetrically as Dc.s.W = 0, DSW = 0. Further, on the lines of
[35], we assume that with the freedom available through the landscape of back-
ground fluxes, one can still keep universal axion c0 massless or ‘nearly’ massless.
We will quantify what we mean by ‘nearly’ and elaborate on this point later while
considering the explicit computations in sections 4 and 5.

3 Review of KNP-Type Natural Inflation

Let us very briefly review the original KNP proposal for natural inflation [22].
We consider the following two-field inflationary potential
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Therefore, a small enough deviation from this condition can create a mass hier-
archy between the two axions rotated in a new basis. As we will see explicitly
in a moment, one can elegantly create a mass hierarchy and (with appropriate
axionic rotation) an alignment leading to the enhancement of decay constant of
the lighter combination also occurs. With the following rotation of axions
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Let us very briefly review the original KNP proposal for natural inflation [22].
We consider the following two-field inflationary potential

V (φ1,φ2) =
2
∑

i=1

Λi

(

1− cos

[

φ1

fi
+
φ2

gi

])

, (3.1)

where fi and gi’s can be sub-Planckian decay constants as the most natural choice.
The determinant of the Hessian of this potential is simplified to

Det (Vij) =
(f2 g1 − f1 g2)2

∏2
i=1 Λi cos

[

φ1
fi

+ φ2
gi

]

f 2
1 f

2
2 g

2
1 g

2
2

. (3.2)

Thus, it will have a flat direction if the following condition holds

f1
f2

=
g1
g2

. (3.3)

Therefore, a small enough deviation from this condition can create a mass hier-
archy between the two axions rotated in a new basis. As we will see explicitly
in a moment, one can elegantly create a mass hierarchy and (with appropriate
axionic rotation) an alignment leading to the enhancement of decay constant of
the lighter combination also occurs. With the following rotation of axions

ψ1 =
g1 φ1 + f1 φ2
√

f 2
1 + g21

, ψ2 =
f1 φ1 − g1 φ2
√

f 2
1 + g21

, (3.4)

we reformulate the expression eq.(3.1) as under

V (ψ1,ψ2) = Λ1

(

1− cos

[

ψ1

f ′
1

])

+ Λ2

(

1− cos

[

ψ1

f ′
2

+
ψ2

feff

])

, (3.5)

where f ′
1, f

′
2 and feff take the form as below

f ′
1 =

f1 g1
√

f 2
1 + g21

, f ′
2 =

f2 g2
√

f 2
1 + g21

f1 f2 + g1 g2
, feff =

f2 g2
√

f 2
1 + g21

|f1 g2 − g1 f2|
. (3.6)
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Thus, if the deviation from the flatness condition eq.(3.3) is small enough, one
can generate an ‘effectively’ large decay constant for ψ2 combination. Further,
together with eq.(3.3) and an appropriate hierarchy Λ2 ≪ Λ1, one can make the
field ψ1 heavier than ψ2 with the respective masses at the minimum given as

m2
ψ1

≃ Λ1

(

1

f 2
1

+
1

g21

)

, m2
ψ2

≃ Λ2 (f2 g1 − f1 g2)2

g22 f
2
2 (f 2

1 + g21)
. (3.7)

Stabilizing ψ1 at one of its minimum ψ1 = 0 would result in a single axion
potential with large decay constant as below

V (ψ2) = Λ2

(

1− cos

[

ψ2

feff

])

. (3.8)

Now we turn to the embedding of KNP-type mechanism in large volume sce-
nario. The main focus would be to utilize universal RR axion C0 along with an
involutively odd RR axion C2.

4 Realizing Natural Inflation in Large Volume

Scenarios

Let us consider the following ansatz for the Kähler potential K motivated by
the large volume scenarios. After introducing a single odd modulus G1 via the
appropriate choice of orientifold involution5, the Kähler potential becomes [68]

K ≡ Kcs − ln(S + S)− 2 lnY (4.1)

= Kcs − ln(S + S)− 2 ln
(

ξB Σ3/2
B − ξS Σ

3/2
S + Cα′

)

,

where

Σα = Tα + T̄α +
κα11

2(S + S̄)
(G1 + Ḡ1)(G1 + Ḡ1) for α ∈ {B, S}, (4.2)

and Cα′ = − χ(X)ξ(3)
4(2π)3 gs3/2

. This form of Kähler potential explicitly shows the shift
symmetries in various RR axionic directions; namely the universal axion C0,
the involutively even axion C4 and the involutively odd axion C2. Although
the presence of α′-corrections break the “no-scale structure”, it still leaves the
direction orthogonal to V (which is τs) to remain flat. This flatness and axionic
shift symmetries are broken via the non-perturbative effects appearing in the
following racetrack form of the superpotential which comes from eq.(2.4)

W = Wcs + A0 e− a0TS (4.3)

+As e
− as(TS+h1(F)S+h2(F)G1) − Bs e

− bs(TS+h3(F)S+h4(F)G1) ,

5For constructing explicit examples of CY orientifold with h11
−
(CY3/O) ̸= 0, see [82, 67].
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KNP mechanism



Kim-Nilles-Peloso (KNP) 
Mechanism in string theory



Four dimensional vacua

‣ Just like GR: no prior geometry (different solutions 
have different geometry), 
‣ String propagation on a slightly curved background: 
‣ Einstein equations + small corrections, 
‣ Product manifold: 
‣ E.g. Cylinder, torus etc; 
‣ Vacuum solution of ten dimensional equations: 

“maximally symmetric spacetime times a six 
dimensional compact manifold”



Scalar fields

‣ Geometric moduli:  
‣ Kahler moduli: size of extra dimensions 
‣ Complex structure moduli: shape of the extra 

dimensions, 
‣ How many?  

‣ topology of the manifold (Hodge numbers), 
‣ Axions: 
‣ scalars from zero modes of higher form potentials 

turned on in extra dimensions, 
‣ no energy cost 
‣ No potential (to begin with),  
‣ The values of these fields need to be fixed: potential;



Fluxes

‣ Turn on field strength of higher form potentials in 
extra dimensions, 
‣ some energy cost, 
‣ Generates a potential for some scalar fields,  
‣ fluxes are quantized, 
‣ Topology determines how many different kinds of 

fluxes possible.



Well controlled constructions…

(d)

V (�) = A


1� cos

✓
�

f

◆�
(7)

(e) Hierarchy of scales:

Mp � Ms � M
KK

� M
mod

� H
inf

> m
inf

> m
SUSY

� ⇢1/4
vac

. (8)

Note that:

• Ms =
1p
↵0 ,

• M
KK

= (V
6

)1/6,

• The masses of various moduli (and axions) can be found from the eigenvalues of the Hessian
matrix of the scalar potential in four dimensional N = 1 supergravity,

• m
inf

is the mass of inflaton,

• m
SUSY

is the scale at which supersymmetry breaks (is this given by m
3/2?),

• ⇢1/4
vac

is the energy scale associated with 4D cosmological constant (or, height of the minimum of
the scalar potential in four dimensional N = 1 supergravity).

• We could use current knowledge of string theory to describe cosmology if the following conditions
hold good:

– define a modulus by the relation Vol = V6
↵03 , then, the scalar potential must be such that the

minimum describing our world must be such that at that minimum, Vol � 1,

– the scalar potential must be such that the minimum describing our world must be such that
at that minimum, g�1

s � 1, i.e. e�� � 1.

Thus, ✓
Mp

Ms

◆
2

= (g�1

s )2Vol . (9)

3. Hierarchies

(a) The various approximations and the limit of validity of these approximations;

• Supergravity approximation, leading order in ↵0 (slowly varying background fields), string tree
level, classical approximation;

• Perturbative corrections:

– ↵0 corrections: loop correction to the beta function of the worldsheet sigma model,

– string loop corrections: loop corrections in spacetime,

• Non-perturbative corrections;

(b) Hierarchy of scales: Refs: (1) section 4.1.1 of Baumann and Mc Allister, (2) 1606.02537,

i. CFT is weakly coupled:
p
↵0 = `s ⌧ L, here, L is the length scale over which the background

fields vary by a substantial amount;

ii. Let the spacetime be of the form R1,3⇥T 6, where R1,3 is a 4D maximally symmetric spacetime(i.e.
either 4D dS, 4D Minkowski or 4D AdS spacetime);

iii. If L
⇤

is the length scale associated with the maximally symmetric spacetime (i.e. e.g. for dS
1/

p
⇤), then, having 4 large dimensions is equivalent to the condition L

⇤

� (V
6

)1/6; note that
for 4 D Minkowski solution, this condition always holds good as L

⇤

= 1;

iv. Scales involved in string cosmology:

• Mp: 4 dim Planck scale (determined by measured values of ~, c and G); laws of QM and GR
do not allow length scales smaller than this length to be measurable even in principle; above
this scale, non-perturbative quantum gravitational e↵ects become important (and notions of
classical geometry are not applicable);
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FIG. 2: For q1 = 40, q2 = 60, h0 = 10, f0 = 10 and V = 100,
one obtains s ⇡ 40, u1 ⇡ 6.86, u2 ⇡ 15.43, the resulting
axion masses are m� ⇡ 1.65 ⇥ 10�7, m⌫1 ⇡ 9.83 ⇥ 10�1 and
m⌫2 ⇡ 3.8⇥10�3. The green curve in this plot is the potential
in the direction in �� ⌫1 plane while the dashed (blue) curve
is the potential in another direction chosen such that there is
substantial enhancement in fu1

 .

one chooses q

1 � q

2, one finds that u1 � u2 and hence
m⌫1 ⌧ m⌫2 . If the other fluxes are also adjusted to also
ensure that m� ⌧ m⌫2 , then, the axion ⌫2 becomes too
heavy. We then expect that we should be able to inte-
grate out this heavy axion and recover the two-axion case
in a limit. As we shall see, though this is true, there exist
interesting subtleties. To take q

1 � q

2 limit, we define

✏ =

r
u2

u1
=

q

2

q

1
, (45)

the desired limit is then ✏ ! 0 limit. Then, in terms of
✏, the Kahler metric in Eq (25) takes the form

Kij̄ =
3

4u2
1 (1� ✏

3)2

 
1 + ✏3

2 � 3✏
2� 3✏

2 ✏+ 1
2✏

!
, (46)

retaining only the leading powers of ✏, we can find the
eigenvalues and hence see that

f

2
light =

3

4u2
1

, (47)

f

2
heavy =

f

2
light

2✏
=
✏

3

2

3

4u2
2

, (48)

where, the fheavy does not become too large. At leading
order, the matrix of change of basis is

P ⇡
 

1�O(✏4) �O(✏4)
3✏2 +O(✏3) 1 +O(✏4)

!
, (49)

where, we follow the convention that the first column of
P is the eigenvector corresponding to smaller eigenvalue.
Let us suppose that when we try to retain the two-axion
limit, the search direction we explore is the intersection
of the plane of perturbatively unfixed axions and � � ⌫̃1

plane, this makes sense since this is equivalent to ⌫̃2 = 0.
Using the above form of the P matrix in Eq (28), it is
easy to see that, in the limit ✏! 0, the line which is com-
mon to this plane (in the space of canonically normalised
scalar fields) and the plane ⌫̃2 = 0 has along the vector
(1,�1/

p
3, 0). Since this is the direction along which  

is defined in the two-axion limit, this indicates that we
have recovered the flux independence of the slope of this
line (mentioned in §IIIA 2) in the two-axion limit. More-
over, if we keep the leading order terms in ✏ and follow
the procedure described in §III B 2, we can see that

f

u1
 = 2f⌫̃1 +O(✏3) . (50)

This result was also mentioned in [38]. Now, having re-
covered the results in the two-axion case, let us apply the
ideas presented in §III B 2.

To this end, we begin to explore other directions in
the three axion field space. In generating fig (3), we have
fixed the fluxes to the following values q1 = 60, q2 =
12, h0 = 10, f0 = 10 and the volume V ⇡ 200. This
gives ✏ = 0.2 and the initial direction of exploration (the
intersection of the plane of perturbatively unfixed axions
and � � ⌫̃1 plane) makes an angle of -29.25 deg w.r.t. �
direction, which is pretty close to the angle obtained in
§IIIA 2.

As we explore other directions in the plane by changing
the angle ✓ (see discussion below eq (29)), we experience
enhancement of the decay constants. Furthermore, the
case ✓ = 0 gives results approximately in agreement with
the two-axion case. In fig (3) the minimum of the green
curve (the variation of fs

 against ✓) lies very close to the
dotted green horizontal line (which specifies f�). But the
the minimum of the red curve (the variation of fs

 against
✓) is far above the dashed orange horizontal line (which
specifies f⌫̃1). This is a manifestation of eq (22) and Eq
(23). In particular, in fig (3), at ✓ = 0, the extreme left
region, fu1

 ⇡ 2f⌫̃1 . Similarly, is is easy to see from fig (3)
that, as mentioned in §III B 3, as we vary ✓, the e↵ective
decay constants blow up and this happens for ✓ = ⇡/2
for fs

 .

5. Beyond the two-axion limit

While it was insightful to recover the two-axion model
in an appropriate limit of the three-axion model, one
must understand that one could vary fluxes such that
✏ is no longer small. For every choice of fluxes, we could
vary ✓ to look for directions to enhance the e↵ective de-
cay constants. The results presented here establish that
the decay constants can be enhanced this way. In par-
ticular, no matter what choice of fluxes on begins with,
one could always vary ✓ and find directions in field space
along which the potential is quite flat.

‣ Quantity f to be deduced (e.g. axion decay constant, 
vacuum energy etc); 

‣ A typical calculation: 
‣ Successive terms: smaller (additional factors of small 

quantities); 
‣ both perturbative and non-perturbative contributions, 

‣ all terms till f_i are known, the subsequent ones are 
unknown, are they small? 

‣ Necessary condition: 
‣ Is it sufficient?

(d) From Ricci flat metric to volume of the compact manifold (and hence KK scale),

(e) From a metric which is conformal to Ricci flat metric to KK reduction (this is useful when we turn
on fluxes in Type IIB theory but not in IIA theory),

M2

p =
2V

(2⇡)7g2s↵
04 , (3)

so that (Ms = ↵0�1/2),
Ms

Mp
⇠ gs

✓
ls
L

◆
3

. (4)

Shouldn’t L ! 1 limit take us back to 10 dim Minkowski spacetime?, shouldn’t that be the regime

in which Ms sits closer to Mp? Notice that Ms/Mp ⇠ g1/4s

⇣
MKK
Mp

⌘
3/4

. We have two issues: (1) in the

limit, V becomes large, MKK becomes small and Ms becomes too small compared to Mp, (2) while
studying string theory on 10 dim Minkowski spacetime, we are told that the string scale is close to
Planck scale, so, we’d suspect that when MKK is sent to zero, we must recover this, but we don’t.

2. Issues:

(a) Can’t quantize strings on arbitrary backgrounds; can’t calculate string loop corrections on arbitrary
backgrounds;

(b) Compactifications: for the following cases, one can quantize the strings and hence, calculate O(gs)
string loop corrections

i. Can quantize strings on R1,3 ⇥ T 6, where T 6 is a six-dimensional torus;

ii. If the compact manifold is an orbifold of a torus etc;

(c) Expansions and control issues:

• In the limit of small l2s/R
2 and small gs, string theory will reduce to supergravity;

• Let us suppose we wish to calculate the scalar potential or the vacuum energy or the axion decay
constant for a particular vacuum of string theory;

• The result of such a calculation in string theory is always of the following form

f = f
0

+ f
1

+ f
2

+ · · · , (5)

I suppose there are non-perturbative contributions too?

• In this series, the successive terms are smaller by an additional factor of gs or of l2s/R
2 or both.

• In a particular vacuum of string theory, there is a fixed value of gs and l2s/R
2. If we find the first

few terms in the expansion of the desired quantity, we know how small/large the contribution of
the un-calculated terms is. If this contribution is less than the desired accuracy, the calculation
is good enough.

• f < Mp in all known controlled regimes of string theory: i.e. whenever gs and l2s/R
2 are small

enough that the contributions of their higher powers do not matter, f < Mp; when f > Mp, one
also finds that gs and l2s/R

2 are large so that we can not trust the conclusion drawn from the
first few already calculated terms.

• In string compactifications, we’d want gs ⌧ 1 (to ensure that the perturbative as well as non-
perturbative corrections due to string interactions are small) and ↵03/V

6

⌧ 1 (to ensure that
the perturbative as well as non-perturbative corrections due to non-zero length of the string are
small).

M =
1X

n=0

⇣
cn + c(1)n e

�An
g + c(2)n e

�Bn
g2 + · · ·

⌘
gn , (6)
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2.4.2 Issues with this setup
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2.5.1 Connection to extra-natural inflation
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S
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p�Ge��|F
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|2 . (15)

Recall that we could define Dµ = @µ � iAµ (note the absence of g here), then, |F
2

|2 has mass dimension
4, irrespective of the dimension of spacetime. This is what fixes the power of ↵0 in previous expression.

3. Thus,

g2
4D ⇠ gs

V
6

M6

s

. (16)

4. Thus, the requirement Rg
4DMp ⌧ 1 implies that

g�1/2
s MsR ⌧ 1 . (17)

In perturbative regime, we would like gs to be small as compared to 1, i.e. g�1/2
s � 1. Thus, the only

way the above expression can hold is if R ⌧ `s, so we are in a regime in which EFT does not hold good.

5. In particular, we had found that g
4

⇡ 2 ⇥ 10�3 and RMp ⇡ 30. If we try to embed this in string theory
(we start with a supersymmetric string theory with a gauge group in 10 dimensions e.g. type I) and
compactify on a T 6 and imagine the torus to be such that one of the radii to be very large as compared
to the others (so that it would look like a five dimensional theory). To find the string scale in this case,
we note that

RMs ⇠ g1/2s (RMp)g4D , (18)

so we find that
R ⇡ 6⇥ 10�2 g1/2s `s , (19)

since gs can not be large in the perturbative regime, so, the size of the largest dimension would be smaller
than string length in this case.
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Extra natural inflation???

Natural inflation???

‣ Whenever we can deduce f, making it Planckian also 
takes us out of the trustworthy regime e.g. small 
volumes etc.



Supergravity

‣ 10 D supergravity to 4 D supergravity, 
‣ Kahler potential, super potential and scalar potential

2

IIA flux vacua. Then, in §III, we attempt to enhance
the e↵ective decay constant, in particular, in §III B 2, we
present a method of doing so and study various conse-
quences of this method in the later subsections. Finally,
in §IV, we conclude with a discussion of various related
issues.

II. TYPE IIA FLUX VACUA

In this work, we shall follow the notations and conven-
tions used in ref [38]. It is well known that compactify-
ing type IIA string theory on orientifolds of Calabi-Yau
threefolds (CY3) gives rise to N = 1 supergravity theory
in 1+3 spacetime dimensions [15]. We note that in the
following, we focus attention to four dimensional e↵ective
field theory obtained from massive type IIA supergrav-
ity theory in ten dimensions [42] as we are interested in
e↵ective action of type IIA orientifolds in the presence
of background fluxes (and there is a 0-form flux F0, the
Romans parameter).

1. N = 1 supergravity

The dynamics of the scalar sector of N = 1 supergrav-
ity theory in 1+3 spacetime dimensions is determined by
a Kahler potential and a superpotential (along with other
quantities which won’t play any role in what follows). Re-
call that if the complex scalar fields in the theory are de-
noted as �i, then, the Kahler potential K(�i, �̄j̄) is a real
function of these fields and has mass dimension +2. Simi-
larly, the superpotential W (�i) is a holomorphic function
of the fields and it has a mass dimension +3. The La-
grangian for the scalar sector (for those scalars which are
not gauged i.e. in the absence of a D-term potential) is
given by the expression

L = K

ij̄
@µ�i@

µ
�

†
j̄ � VF (1)

where, the F-term scalar potential is given by

VF = e

K
M2

p


K

ij̄
DiWDj̄W̄ � 3|W |2

M

2
p

�
, (2)

note that here, the Kahler covariant derivative is given
by DiW = @iW + W@iK

M2
p

and Kij̄ =
@2K

@�i@�̄j̄
, while K

ij̄ is

the inverse of Kij̄ .

2. N = 1 supergravity from IIA: fundamentals

The N = 1 supersymmetry of the four-dimensional ef-
fective theory would ensure that all scalar fields are com-
plex, and therefore pseudoscalar axions exist along with
scalar moduli. For type IIA supergravity on orientifolds
of a CY3, we have three sets of complex scalars: Ti =
bi + iti (called complexified Kahler moduli, here, i runs

from 1 to h

1,1
� ), U� = u� + i⌫�, where � = 1, 2, . . . , h2,1

(here, u� are the complex structure moduli while ⌫� are
axions) and, finally, S = s+ i� (here, s is the dilaton and
� is one of the axions). Recall that the vacuum expec-
tation value of the moduli fields determine the shape or
size of certain topological cycles in the extra dimensions.
The Kahler potential for the resulting theory is given

by a sum of three contributions

K = � ln 8V � ln(S + S̄)� 2 lnV 0
, (3)

here, V depends on the Kahler moduli ti alone (see [38]
for its exact expression) while V 0 depends on complex
structure moduli u� alone. Note that the Kahler poten-
tial does not depend on the axions i.e. bi, � and ⌫� due
to a perturbative shift symmetry. In this work, we focus
our attention on two simple and quiet similar cases:
(a) CY3 which is mirror of the quintic, for which h

2,1 =

1, V 0 = u

3/2
1 (we will call this the two axion case), and,

(b) CY3 which is mirror to P[1,1,6,9] manifold for which
h

2,1 = 2 while V 0 is given by [43]

V 0 = u

3/2
1 � u

3/2
2 , (4)

which we will call the three-axion case. Note that one
could obtain V 0 of two-axion case from the V 0 of three-
axion case by setting u2 = 0.

The moduli and axions correspond to flat directions of
the scalar potential (evaluated at the leading order) and
they are stabilized by subleading e↵ects such as fluxes or
instantons, to which we now turn.

3. Fluxes, superpotential and perturbative moduli
stabilization

When fluxes are turned on, a superpotential is induced
in the four dimensional e↵ective theory ([15–17, 24], also,
see [38] for the details relevant in our context) and the
compactification manifold is no longer a Calabi-Yau man-
ifold, but for small enough fluxes, the backreaction could
be ignored.

One could then find the scalar potential using Eq (2)
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Sitter). By following this procedure, one finds that all the
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moduli) get fixed while only one linear combination of
RR axions (�, ⌫�) gets fixed, thus, unless h

2,1 = 0, this
leaves some axions unfixed.

For our purpose, the flux values themselves can be
thought of as “free parameters” which we can adjust to
obtain di↵erent solutions. When we focus attention on
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responding “free parameters” are the fluxes denoted as
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IIA flux vacua. Then, in §III, we attempt to enhance
the e↵ective decay constant, in particular, in §III B 2, we
present a method of doing so and study various conse-
quences of this method in the later subsections. Finally,
in §IV, we conclude with a discussion of various related
issues.
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In this work, we shall follow the notations and conven-
tions used in ref [38]. It is well known that compactify-
ing type IIA string theory on orientifolds of Calabi-Yau
threefolds (CY3) gives rise to N = 1 supergravity theory
in 1+3 spacetime dimensions [15]. We note that in the
following, we focus attention to four dimensional e↵ective
field theory obtained from massive type IIA supergrav-
ity theory in ten dimensions [42] as we are interested in
e↵ective action of type IIA orientifolds in the presence
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Romans parameter).
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larly, the superpotential W (�i) is a holomorphic function
of the fields and it has a mass dimension +3. The La-
grangian for the scalar sector (for those scalars which are
not gauged i.e. in the absence of a D-term potential) is
given by the expression

L = K

ij̄
@µ�i@

µ
�

†
j̄ � VF (1)

where, the F-term scalar potential is given by

VF = e

K
M2

p


K

ij̄
DiWDj̄W̄ � 3|W |2

M

2
p

�
, (2)

note that here, the Kahler covariant derivative is given
by DiW = @iW + W@iK

M2
p

and Kij̄ =
@2K

@�i@�̄j̄
, while K

ij̄ is

the inverse of Kij̄ .

2. N = 1 supergravity from IIA: fundamentals

The N = 1 supersymmetry of the four-dimensional ef-
fective theory would ensure that all scalar fields are com-
plex, and therefore pseudoscalar axions exist along with
scalar moduli. For type IIA supergravity on orientifolds
of a CY3, we have three sets of complex scalars: Ti =
bi + iti (called complexified Kahler moduli, here, i runs

from 1 to h

1,1
� ), U� = u� + i⌫�, where � = 1, 2, . . . , h2,1

(here, u� are the complex structure moduli while ⌫� are
axions) and, finally, S = s+ i� (here, s is the dilaton and
� is one of the axions). Recall that the vacuum expec-
tation value of the moduli fields determine the shape or
size of certain topological cycles in the extra dimensions.
The Kahler potential for the resulting theory is given

by a sum of three contributions

K = � ln 8V � ln(S + S̄)� 2 lnV 0
, (3)

here, V depends on the Kahler moduli ti alone (see [38]
for its exact expression) while V 0 depends on complex
structure moduli u� alone. Note that the Kahler poten-
tial does not depend on the axions i.e. bi, � and ⌫� due
to a perturbative shift symmetry. In this work, we focus
our attention on two simple and quiet similar cases:
(a) CY3 which is mirror of the quintic, for which h

2,1 =

1, V 0 = u

3/2
1 (we will call this the two axion case), and,

(b) CY3 which is mirror to P[1,1,6,9] manifold for which
h

2,1 = 2 while V 0 is given by [43]

V 0 = u

3/2
1 � u

3/2
2 , (4)

which we will call the three-axion case. Note that one
could obtain V 0 of two-axion case from the V 0 of three-
axion case by setting u2 = 0.

The moduli and axions correspond to flat directions of
the scalar potential (evaluated at the leading order) and
they are stabilized by subleading e↵ects such as fluxes or
instantons, to which we now turn.

3. Fluxes, superpotential and perturbative moduli
stabilization

When fluxes are turned on, a superpotential is induced
in the four dimensional e↵ective theory ([15–17, 24], also,
see [38] for the details relevant in our context) and the
compactification manifold is no longer a Calabi-Yau man-
ifold, but for small enough fluxes, the backreaction could
be ignored.

One could then find the scalar potential using Eq (2)
and look for supersymmetric critical points, by using the
condition DaW = 0 (notice that since we are looking
for supersymmetric critical points, they can not be de-
Sitter). By following this procedure, one finds that all the
geometric moduli (Kahler moduli and complex structure
moduli) get fixed while only one linear combination of
RR axions (�, ⌫�) gets fixed, thus, unless h

2,1 = 0, this
leaves some axions unfixed.

For our purpose, the flux values themselves can be
thought of as “free parameters” which we can adjust to
obtain di↵erent solutions. When we focus attention on
the (S,U1, U2) sector of the scalar field space, the cor-
responding “free parameters” are the fluxes denoted as
q

1, q2, f0 and h0 as well as the volume V (see [38] for
details). In the three-axion case, moduli stabilization at

2

IIA flux vacua. Then, in §III, we attempt to enhance
the e↵ective decay constant, in particular, in §III B 2, we
present a method of doing so and study various conse-
quences of this method in the later subsections. Finally,
in §IV, we conclude with a discussion of various related
issues.

II. TYPE IIA FLUX VACUA

In this work, we shall follow the notations and conven-
tions used in ref [38]. It is well known that compactify-
ing type IIA string theory on orientifolds of Calabi-Yau
threefolds (CY3) gives rise to N = 1 supergravity theory
in 1+3 spacetime dimensions [15]. We note that in the
following, we focus attention to four dimensional e↵ective
field theory obtained from massive type IIA supergrav-
ity theory in ten dimensions [42] as we are interested in
e↵ective action of type IIA orientifolds in the presence
of background fluxes (and there is a 0-form flux F0, the
Romans parameter).

1. N = 1 supergravity

The dynamics of the scalar sector of N = 1 supergrav-
ity theory in 1+3 spacetime dimensions is determined by
a Kahler potential and a superpotential (along with other
quantities which won’t play any role in what follows). Re-
call that if the complex scalar fields in the theory are de-
noted as �i, then, the Kahler potential K(�i, �̄j̄) is a real
function of these fields and has mass dimension +2. Simi-
larly, the superpotential W (�i) is a holomorphic function
of the fields and it has a mass dimension +3. The La-
grangian for the scalar sector (for those scalars which are
not gauged i.e. in the absence of a D-term potential) is
given by the expression

L = K

ij̄
@µ�i@

µ
�

†
j̄ � VF (1)

where, the F-term scalar potential is given by

VF = e

K
M2

p


K

ij̄
DiWDj̄W̄ � 3|W |2

M

2
p

�
, (2)

note that here, the Kahler covariant derivative is given
by DiW = @iW + W@iK

M2
p

and Kij̄ =
@2K

@�i@�̄j̄
, while K

ij̄ is

the inverse of Kij̄ .

2. N = 1 supergravity from IIA: fundamentals

The N = 1 supersymmetry of the four-dimensional ef-
fective theory would ensure that all scalar fields are com-
plex, and therefore pseudoscalar axions exist along with
scalar moduli. For type IIA supergravity on orientifolds
of a CY3, we have three sets of complex scalars: Ti =
bi + iti (called complexified Kahler moduli, here, i runs

from 1 to h

1,1
� ), U� = u� + i⌫�, where � = 1, 2, . . . , h2,1

(here, u� are the complex structure moduli while ⌫� are
axions) and, finally, S = s+ i� (here, s is the dilaton and
� is one of the axions). Recall that the vacuum expec-
tation value of the moduli fields determine the shape or
size of certain topological cycles in the extra dimensions.
The Kahler potential for the resulting theory is given

by a sum of three contributions

K = � ln 8V � ln(S + S̄)� 2 lnV 0
, (3)

here, V depends on the Kahler moduli ti alone (see [38]
for its exact expression) while V 0 depends on complex
structure moduli u� alone. Note that the Kahler poten-
tial does not depend on the axions i.e. bi, � and ⌫� due
to a perturbative shift symmetry. In this work, we focus
our attention on two simple and quiet similar cases:
(a) CY3 which is mirror of the quintic, for which h

2,1 =

1, V 0 = u

3/2
1 (we will call this the two axion case), and,

(b) CY3 which is mirror to P[1,1,6,9] manifold for which
h

2,1 = 2 while V 0 is given by [43]

V 0 = u

3/2
1 � u

3/2
2 , (4)

which we will call the three-axion case. Note that one
could obtain V 0 of two-axion case from the V 0 of three-
axion case by setting u2 = 0.

The moduli and axions correspond to flat directions of
the scalar potential (evaluated at the leading order) and
they are stabilized by subleading e↵ects such as fluxes or
instantons, to which we now turn.

3. Fluxes, superpotential and perturbative moduli
stabilization

When fluxes are turned on, a superpotential is induced
in the four dimensional e↵ective theory ([15–17, 24], also,
see [38] for the details relevant in our context) and the
compactification manifold is no longer a Calabi-Yau man-
ifold, but for small enough fluxes, the backreaction could
be ignored.

One could then find the scalar potential using Eq (2)
and look for supersymmetric critical points, by using the
condition DaW = 0 (notice that since we are looking
for supersymmetric critical points, they can not be de-
Sitter). By following this procedure, one finds that all the
geometric moduli (Kahler moduli and complex structure
moduli) get fixed while only one linear combination of
RR axions (�, ⌫�) gets fixed, thus, unless h

2,1 = 0, this
leaves some axions unfixed.

For our purpose, the flux values themselves can be
thought of as “free parameters” which we can adjust to
obtain di↵erent solutions. When we focus attention on
the (S,U1, U2) sector of the scalar field space, the cor-
responding “free parameters” are the fluxes denoted as
q

1, q2, f0 and h0 as well as the volume V (see [38] for
details). In the three-axion case, moduli stabilization at

2

IIA flux vacua. Then, in §III, we attempt to enhance
the e↵ective decay constant, in particular, in §III B 2, we
present a method of doing so and study various conse-
quences of this method in the later subsections. Finally,
in §IV, we conclude with a discussion of various related
issues.

II. TYPE IIA FLUX VACUA

In this work, we shall follow the notations and conven-
tions used in ref [38]. It is well known that compactify-
ing type IIA string theory on orientifolds of Calabi-Yau
threefolds (CY3) gives rise to N = 1 supergravity theory
in 1+3 spacetime dimensions [15]. We note that in the
following, we focus attention to four dimensional e↵ective
field theory obtained from massive type IIA supergrav-
ity theory in ten dimensions [42] as we are interested in
e↵ective action of type IIA orientifolds in the presence
of background fluxes (and there is a 0-form flux F0, the
Romans parameter).

1. N = 1 supergravity

The dynamics of the scalar sector of N = 1 supergrav-
ity theory in 1+3 spacetime dimensions is determined by
a Kahler potential and a superpotential (along with other
quantities which won’t play any role in what follows). Re-
call that if the complex scalar fields in the theory are de-
noted as �i, then, the Kahler potential K(�i, �̄j̄) is a real
function of these fields and has mass dimension +2. Simi-
larly, the superpotential W (�i) is a holomorphic function
of the fields and it has a mass dimension +3. The La-
grangian for the scalar sector (for those scalars which are
not gauged i.e. in the absence of a D-term potential) is
given by the expression

L = K

ij̄
@µ�i@

µ
�

†
j̄ � VF (1)

where, the F-term scalar potential is given by

VF = e

K
M2

p


K

ij̄
DiWDj̄W̄ � 3|W |2

M

2
p

�
, (2)

note that here, the Kahler covariant derivative is given
by DiW = @iW + W@iK

M2
p

and Kij̄ =
@2K

@�i@�̄j̄
, while K

ij̄ is

the inverse of Kij̄ .

2. N = 1 supergravity from IIA: fundamentals

The N = 1 supersymmetry of the four-dimensional ef-
fective theory would ensure that all scalar fields are com-
plex, and therefore pseudoscalar axions exist along with
scalar moduli. For type IIA supergravity on orientifolds
of a CY3, we have three sets of complex scalars: Ti =
bi + iti (called complexified Kahler moduli, here, i runs

from 1 to h

1,1
� ), U� = u� + i⌫�, where � = 1, 2, . . . , h2,1

(here, u� are the complex structure moduli while ⌫� are
axions) and, finally, S = s+ i� (here, s is the dilaton and
� is one of the axions). Recall that the vacuum expec-
tation value of the moduli fields determine the shape or
size of certain topological cycles in the extra dimensions.
The Kahler potential for the resulting theory is given

by a sum of three contributions

K = � ln 8V � ln(S + S̄)� 2 lnV 0
, (3)

here, V depends on the Kahler moduli ti alone (see [38]
for its exact expression) while V 0 depends on complex
structure moduli u� alone. Note that the Kahler poten-
tial does not depend on the axions i.e. bi, � and ⌫� due
to a perturbative shift symmetry. In this work, we focus
our attention on two simple and quiet similar cases:
(a) CY3 which is mirror of the quintic, for which h

2,1 =

1, V 0 = u

3/2
1 (we will call this the two axion case), and,

(b) CY3 which is mirror to P[1,1,6,9] manifold for which
h

2,1 = 2 while V 0 is given by [43]

V 0 = u

3/2
1 � u

3/2
2 , (4)

which we will call the three-axion case. Note that one
could obtain V 0 of two-axion case from the V 0 of three-
axion case by setting u2 = 0.

The moduli and axions correspond to flat directions of
the scalar potential (evaluated at the leading order) and
they are stabilized by subleading e↵ects such as fluxes or
instantons, to which we now turn.

3. Fluxes, superpotential and perturbative moduli
stabilization

When fluxes are turned on, a superpotential is induced
in the four dimensional e↵ective theory ([15–17, 24], also,
see [38] for the details relevant in our context) and the
compactification manifold is no longer a Calabi-Yau man-
ifold, but for small enough fluxes, the backreaction could
be ignored.

One could then find the scalar potential using Eq (2)
and look for supersymmetric critical points, by using the
condition DaW = 0 (notice that since we are looking
for supersymmetric critical points, they can not be de-
Sitter). By following this procedure, one finds that all the
geometric moduli (Kahler moduli and complex structure
moduli) get fixed while only one linear combination of
RR axions (�, ⌫�) gets fixed, thus, unless h

2,1 = 0, this
leaves some axions unfixed.

For our purpose, the flux values themselves can be
thought of as “free parameters” which we can adjust to
obtain di↵erent solutions. When we focus attention on
the (S,U1, U2) sector of the scalar field space, the cor-
responding “free parameters” are the fluxes denoted as
q

1, q2, f0 and h0 as well as the volume V (see [38] for
details). In the three-axion case, moduli stabilization at



Type IIA flux vacua

‣ Type IIA string theory, type IIA supergravity, 
‣ Massive type IIA supergravity, 
‣ Just using the ingredients mentioned, all geometric 

moduli get fixed, 
‣ A linear combination of RR axions get fixed, 
‣ Additional ingredient: Euclidean D2 brane instanton 

(next slide): 
‣ all moduli can be fixed, 
‣ Supersymmetric AdS vacua easy to find, 
‣ dS vacua much harder (don’t exist?), 
‣ Study large field excursion in this toy set up;



Non-perturbative ingredient

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

V (�) = ⇤4


1� cos

✓
�

f

◆�
(34)

�
1

(35)

26

‣ instanton-like contribution to the path integral, 
‣ semiclassical approximation: action of an “Euclidean 
Dp-brane” 
‣ branes: soliton-like objects in string theory, 
‣ Dp-branes charged under certain (p+1)-form fields

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

A ⇠ e

h
�
⇣

µ2
gs

R
⌃3

d3x
p

det(G)+iµ2

R
⌃3

C3

⌘i

(34)

V (�) = ⇤4


1� cos

✓
�

f

◆�
(35)

�
1

(36)

26

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

A ⇠ e

h
�
⇣

µ2
gs

R
⌃3

d3x
p

det(G)+iµ2

R
⌃3

C3

⌘i

(34)

A ⇠ e

⇣
�TpVol(⌃3)+iµ2

R
⌃3

C3

⌘

(35)

A ⇠ e�TpVol(⌃3)+iµ2

R
⌃3

C3 (36)

V (�) = ⇤4


1� cos

✓
�

f

◆�
(37)

�
1

(38)

26

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

A ⇠ e

h
�
⇣

µ2
gs

R
⌃3

d3x
p

det(G)+iµ2

R
⌃3

C3

⌘i

(34)

A ⇠ e

⇣
�TpVol(⌃3)+iµ2

R
⌃3

C3

⌘

(35)

A ⇠ e�TpVol(⌃3)+iµ2

R
⌃3

C3 (36)

V (�) ⇠ e�S1 cos (a) (37)

�
1

(38)

26



Low energy theory of axions and 
instantons
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On the other hand, only the following linear combination
of the axions is fixed by this procedure.

h0� + q

1
⌫1 + q

2
⌫2 = constant . (8)

Here, the two-axion case can be arrived at by setting ⌫2
to zero.

4. Non-perturbative e↵ects

The superpotential generated by fluxes receives non-
perturbative corrections from Euclidean D2-brane in-
stantons, which is of the form

W = Wperturbative +
X

I

AIe
�aI

0S�aI
�U�

, (9)

Given this generic form of the superpotential and the
Kahler potential given in Eq (3), one can easily find the
scalar potential by using Eq (2). For the correct choices
of aI0 and a

I
�, the potential would be of the form shown

in Eq (11) below. These choices are determined by the
choice of the compactification manifold.

III. ENHANCEMENT OF AXION DECAY
CONSTANT

In this section, we shall attempt to enhance axion de-
cay constant in the set up of IIA theory presented in the
last section. This problem was studied in ref [38] which
we closely follow. As we shall see, there are important
new lessons to be learnt even in the simple case of a
CY3 which is mirror to P[1,1,6,9] manifold [43], for which
h

2,1 = 2 and there are three RR axions.
To begin with, however, we remind ourselves of how to

deal with a slightly di↵erent situation, the two-axion case
mentioned in the last section i.e. mirror of the quintic

for which h

2,1 = 1 and V 0 = u

3/2
1 . This case has already

been studied in [38], but as we shall see, there are im-
portant observations to be made in order to study the
more interesting case of mirror to P[1,1,6,9] with h

2,1 = 2
i.e. the three axion case. In [38], the author only briefly
mentions the three axion case (in particular, in [38] only
the two-axion limit of the three axion case is mentioned).
In the upcoming subsection, we revisit the two axion case
while in the sub section after that, we analyse the three
axion case.

A. The two-axion (i.e. h2,1 = 1) case

In this case, the fluxes we could vary (to understand
axion dynamics) are q

1
, f0, h0 and we could think of the

volume of the compactification manifold V as another
“free parameter.” The values of moduli s and u1 can be
found in terms of these variables.

1. Basics

Here, V 0 can be obtained from Eq (4) by setting u2 = 0
and so, using the equations presented in §II 1, we can
show that
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At low energies, we can think of s and u1 as fixed
quantities, the Lagrangian determining the dynamics of
the remaining low energy fields is given by (see e.g. [38])
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where, the potential for the axions is generated by non-
perturbative e↵ects. On comparing Eq (1), Eq (10) and
Eq (11), we find that f� is dependent on s while f⌫1 is
dependent on u1 i.e.

f� =
1

2s
, f⌫1 =

p
3

2u1
. (12)

Needless to say, the canonically normalised axions are
f�� and f⌫1⌫1. Ignoring the non-perturbative e↵ects, at
leading order in ↵0 and gs, the linear combination h0�+
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⌫1 is fixed, by redefining the fields, one could ensure

that
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If we go along the straight line direction Eq (14), non-
perturbative e↵ects shall generate a potential which can
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more interesting case of mirror to P[1,1,6,9] with h

2,1 = 2
i.e. the three axion case. In [38], the author only briefly
mentions the three axion case (in particular, in [38] only
the two-axion limit of the three axion case is mentioned).
In the upcoming subsection, we revisit the two axion case
while in the sub section after that, we analyse the three
axion case.

A. The two-axion (i.e. h2,1 = 1) case

In this case, the fluxes we could vary (to understand
axion dynamics) are q

1
, f0, h0 and we could think of the

volume of the compactification manifold V as another
“free parameter.” The values of moduli s and u1 can be
found in terms of these variables.

1. Basics

Here, V 0 can be obtained from Eq (4) by setting u2 = 0
and so, using the equations presented in §II 1, we can
show that
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, (10)

At low energies, we can think of s and u1 as fixed
quantities, the Lagrangian determining the dynamics of
the remaining low energy fields is given by (see e.g. [38])
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where, the potential for the axions is generated by non-
perturbative e↵ects. On comparing Eq (1), Eq (10) and
Eq (11), we find that f� is dependent on s while f⌫1 is
dependent on u1 i.e.
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. (12)

Needless to say, the canonically normalised axions are
f�� and f⌫1⌫1. Ignoring the non-perturbative e↵ects, at
leading order in ↵0 and gs, the linear combination h0�+
q
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⌫1 is fixed, by redefining the fields, one could ensure

that
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If we go along the straight line direction Eq (14), non-
perturbative e↵ects shall generate a potential which can
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A simple realisation of KNP 
mechanism

‣ a two- dimensional axion field space,  
‣ there is one heavy direction,  
‣ in the direction orthogonal to it, which is flat at the 
perturbative level, the potential is generated by non-
perturbative effects (and hence, is a cosine), 
‣ CAUTION: is field space still compact?
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be found by substituting for � and ⌫1 from Eq (17) into
Eq (11), one thus obtains,

L = �1

2
(@ )2 �

"
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0 +A
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1� cos

 

f
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!

+B
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, (18)

where, fs
 = N/q

1 and f

u1
 = N/h0. Since in the low

energy theory we can think of s and u1 as fixed quan-
tities, the potential experienced if one moves along the
straight line direction Eq (14) is a function of only one
field, the distance  along this direction. Then, Eq (18)
suggests that the potential of  is a sum of two cosines
with di↵erent amplitudes and periods.

2. Flux independence of the slope of fixed direction

The coe�cients of � and ⌫1 in Eq (13) are clearly
flux dependent, hence, by changing the fluxes, we could
change the slope of the line in � � ⌫1 plane. Now con-
sider the line in (f��, f⌫1⌫1) plane of the canonically nor-
malised fields, the slope of the straight line in Eq (14) is
�(h0f⌫1)/(f�q

1). Using Eq (12), eq (5) and eq (6) (with
q

2 set to 0), we find that this slope is equal to �1/
p
3. I.e

the fixed direction in the space of canonically normalised
fields makes an angle �⇡/6 w.r.t. the positive f�� axis.
Thus, by changing the fluxes, we can not change the ori-
entation of the straight line in the plane of canonically
normalised fields.

3. Obstruction to flat potential

Now, in this context one could think about the poten-
tial along the  direction and its possible flatness. One
of the things we mean when we say that the potential
along the straight line direction Eq (14) is pretty flat is
that it is a cosine with very large period. Suppose that
one of decay constants among f

s
 and f

u1
 , say the latter,

is very large and that s is large as compared to u1, then,
the amplitude of the first cosine in Eq (18) is exponen-
tially suppressed as compared to the second cosine while
the period of this second cosine is also large, thus, we
could get a direction in which the potential is quite flat.
Note that,

f

s
 =

N

q

1
=

p
f

2
�(q

1)2 + f

2
⌫1(h0)2

q

1
, s =

2f0V
5h0

, (19)

f

u1
 =

N

h0
=

p
f

2
�(q

1)2 + f

2
⌫1(h0)2

h0
, u1 =

3h0s

q

1
. (20)

Thus, it appears that if one keeps h0, f0 and V fixed and
increases q1, then for large enough q

1, s stays put while
u1 decreases and f

s
 stays constant while f

u1
 increases.

Thus, a low energy observer might conclude that the first
cosine in Eq (18) shall become suppressed over the second
one while the period of the second one could be made
large, thus, flattening the potential. Furthermore, using
eq (12), eq (5) and eq (6) (with q

2 set to 0), we conclude
that

f

u1
 =

q

1

p
3h0s

, (21)

so that increasing q

1 with fixed s (by holding h0, f0 and
V fixed) will cause f

u1
 as much as we like without any

consequences. This happens to be not true, since it turns
out that

f

s
 =

1p
3s

=
2f�p
3
, (22)

f

u1
 =

p
3

u1
= 2f⌫1 . (23)

Since f

s
 and f

u1
 are simply proportional to the fun-

damental axion decay constants f� and f⌫1 , and since
these fundamental decay constants can not be super-
Planckian, we conclude that f

s
 and f

u1
 shall also re-

main sub-Planckian. even though we could increase f

s
 

and f

u1
 , we can not make them so large that u1 and s

become too small. Since s and u1 are geometric moduli
which determine the sizes and shapes of compactification
manifold, they can not be made too small without leaving
the regime of validity of low energy e↵ective field theory.
For our purpose, we note that the factors relating f

s
 

to f� and f

u1
 to f⌫1 are O(1) numbers. We shall see that

in two-axion limit of three-axion case, there is additional
freedom which can cause these factors to be very large
numbers.

B. The three axion case

In the rest of this subsection, we shall analyse this
possibility and recover the two-axion case. We will find
that the three axion case o↵ers new features and there is
scope for enhancement of decay constant.

1. Diagonalization of Kahler metric

Given the Kahler potential, the metric in the scalar
field space can be found from

Kij̄ =
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where, fs
 = N/q

1 and f

u1
 = N/h0. Since in the low

energy theory we can think of s and u1 as fixed quan-
tities, the potential experienced if one moves along the
straight line direction Eq (14) is a function of only one
field, the distance  along this direction. Then, Eq (18)
suggests that the potential of  is a sum of two cosines
with di↵erent amplitudes and periods.

2. Flux independence of the slope of fixed direction

The coe�cients of � and ⌫1 in Eq (13) are clearly
flux dependent, hence, by changing the fluxes, we could
change the slope of the line in � � ⌫1 plane. Now con-
sider the line in (f��, f⌫1⌫1) plane of the canonically nor-
malised fields, the slope of the straight line in Eq (14) is
�(h0f⌫1)/(f�q

1). Using Eq (12), eq (5) and eq (6) (with
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2 set to 0), we find that this slope is equal to �1/
p
3. I.e

the fixed direction in the space of canonically normalised
fields makes an angle �⇡/6 w.r.t. the positive f�� axis.
Thus, by changing the fluxes, we can not change the ori-
entation of the straight line in the plane of canonically
normalised fields.

3. Obstruction to flat potential

Now, in this context one could think about the poten-
tial along the  direction and its possible flatness. One
of the things we mean when we say that the potential
along the straight line direction Eq (14) is pretty flat is
that it is a cosine with very large period. Suppose that
one of decay constants among f

s
 and f
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 , say the latter,

is very large and that s is large as compared to u1, then,
the amplitude of the first cosine in Eq (18) is exponen-
tially suppressed as compared to the second cosine while
the period of this second cosine is also large, thus, we
could get a direction in which the potential is quite flat.
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Thus, it appears that if one keeps h0, f0 and V fixed and
increases q1, then for large enough q

1, s stays put while
u1 decreases and f

s
 stays constant while f

u1
 increases.

Thus, a low energy observer might conclude that the first
cosine in Eq (18) shall become suppressed over the second
one while the period of the second one could be made
large, thus, flattening the potential. Furthermore, using
eq (12), eq (5) and eq (6) (with q
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1 with fixed s (by holding h0, f0 and
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 and f

u1
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become too small. Since s and u1 are geometric moduli
which determine the sizes and shapes of compactification
manifold, they can not be made too small without leaving
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where, fs
 = N/q

1 and f

u1
 = N/h0. Since in the low

energy theory we can think of s and u1 as fixed quan-
tities, the potential experienced if one moves along the
straight line direction Eq (14) is a function of only one
field, the distance  along this direction. Then, Eq (18)
suggests that the potential of  is a sum of two cosines
with di↵erent amplitudes and periods.

2. Flux independence of the slope of fixed direction

The coe�cients of � and ⌫1 in Eq (13) are clearly
flux dependent, hence, by changing the fluxes, we could
change the slope of the line in � � ⌫1 plane. Now con-
sider the line in (f��, f⌫1⌫1) plane of the canonically nor-
malised fields, the slope of the straight line in Eq (14) is
�(h0f⌫1)/(f�q
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2 set to 0), we find that this slope is equal to �1/
p
3. I.e

the fixed direction in the space of canonically normalised
fields makes an angle �⇡/6 w.r.t. the positive f�� axis.
Thus, by changing the fluxes, we can not change the ori-
entation of the straight line in the plane of canonically
normalised fields.

3. Obstruction to flat potential

Now, in this context one could think about the poten-
tial along the  direction and its possible flatness. One
of the things we mean when we say that the potential
along the straight line direction Eq (14) is pretty flat is
that it is a cosine with very large period. Suppose that
one of decay constants among f
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is very large and that s is large as compared to u1, then,
the amplitude of the first cosine in Eq (18) is exponen-
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Thus, it appears that if one keeps h0, f0 and V fixed and
increases q1, then for large enough q

1, s stays put while
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 stays constant while f
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 increases.

Thus, a low energy observer might conclude that the first
cosine in Eq (18) shall become suppressed over the second
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u1
 are simply proportional to the fun-

damental axion decay constants f� and f⌫1 , and since
these fundamental decay constants can not be super-
Planckian, we conclude that f

s
 and f

u1
 shall also re-

main sub-Planckian. even though we could increase f

s
 

and f

u1
 , we can not make them so large that u1 and s

become too small. Since s and u1 are geometric moduli
which determine the sizes and shapes of compactification
manifold, they can not be made too small without leaving
the regime of validity of low energy e↵ective field theory.
For our purpose, we note that the factors relating f

s
 

to f� and f

u1
 to f⌫1 are O(1) numbers. We shall see that

in two-axion limit of three-axion case, there is additional
freedom which can cause these factors to be very large
numbers.

B. The three axion case

In the rest of this subsection, we shall analyse this
possibility and recover the two-axion case. We will find
that the three axion case o↵ers new features and there is
scope for enhancement of decay constant.

1. Diagonalization of Kahler metric

Given the Kahler potential, the metric in the scalar
field space can be found from

Kij̄ =
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which in the (U1, U2) subspace of the scalar field space
turns out to be
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be found by substituting for � and ⌫1 from Eq (17) into
Eq (11), one thus obtains,
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where, fs
 = N/q

1 and f

u1
 = N/h0. Since in the low

energy theory we can think of s and u1 as fixed quan-
tities, the potential experienced if one moves along the
straight line direction Eq (14) is a function of only one
field, the distance  along this direction. Then, Eq (18)
suggests that the potential of  is a sum of two cosines
with di↵erent amplitudes and periods.

2. Flux independence of the slope of fixed direction

The coe�cients of � and ⌫1 in Eq (13) are clearly
flux dependent, hence, by changing the fluxes, we could
change the slope of the line in � � ⌫1 plane. Now con-
sider the line in (f��, f⌫1⌫1) plane of the canonically nor-
malised fields, the slope of the straight line in Eq (14) is
�(h0f⌫1)/(f�q

1). Using Eq (12), eq (5) and eq (6) (with
q

2 set to 0), we find that this slope is equal to �1/
p
3. I.e

the fixed direction in the space of canonically normalised
fields makes an angle �⇡/6 w.r.t. the positive f�� axis.
Thus, by changing the fluxes, we can not change the ori-
entation of the straight line in the plane of canonically
normalised fields.

3. Obstruction to flat potential

Now, in this context one could think about the poten-
tial along the  direction and its possible flatness. One
of the things we mean when we say that the potential
along the straight line direction Eq (14) is pretty flat is
that it is a cosine with very large period. Suppose that
one of decay constants among f

s
 and f

u1
 , say the latter,

is very large and that s is large as compared to u1, then,
the amplitude of the first cosine in Eq (18) is exponen-
tially suppressed as compared to the second cosine while
the period of this second cosine is also large, thus, we
could get a direction in which the potential is quite flat.
Note that,

f
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=

p
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Thus, it appears that if one keeps h0, f0 and V fixed and
increases q1, then for large enough q

1, s stays put while
u1 decreases and f

s
 stays constant while f

u1
 increases.

Thus, a low energy observer might conclude that the first
cosine in Eq (18) shall become suppressed over the second
one while the period of the second one could be made
large, thus, flattening the potential. Furthermore, using
eq (12), eq (5) and eq (6) (with q

2 set to 0), we conclude
that

f

u1
 =

q

1

p
3h0s

, (21)

so that increasing q

1 with fixed s (by holding h0, f0 and
V fixed) will cause f

u1
 as much as we like without any

consequences. This happens to be not true, since it turns
out that

f

s
 =

1p
3s

=
2f�p
3
, (22)

f
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 =
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3

u1
= 2f⌫1 . (23)

Since f

s
 and f

u1
 are simply proportional to the fun-

damental axion decay constants f� and f⌫1 , and since
these fundamental decay constants can not be super-
Planckian, we conclude that f

s
 and f

u1
 shall also re-

main sub-Planckian. even though we could increase f

s
 

and f

u1
 , we can not make them so large that u1 and s

become too small. Since s and u1 are geometric moduli
which determine the sizes and shapes of compactification
manifold, they can not be made too small without leaving
the regime of validity of low energy e↵ective field theory.
For our purpose, we note that the factors relating f

s
 

to f� and f

u1
 to f⌫1 are O(1) numbers. We shall see that

in two-axion limit of three-axion case, there is additional
freedom which can cause these factors to be very large
numbers.

B. The three axion case

In the rest of this subsection, we shall analyse this
possibility and recover the two-axion case. We will find
that the three axion case o↵ers new features and there is
scope for enhancement of decay constant.

1. Diagonalization of Kahler metric

Given the Kahler potential, the metric in the scalar
field space can be found from

Kij̄ =
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be found by substituting for � and ⌫1 from Eq (17) into
Eq (11), one thus obtains,
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where, fs
 = N/q

1 and f

u1
 = N/h0. Since in the low

energy theory we can think of s and u1 as fixed quan-
tities, the potential experienced if one moves along the
straight line direction Eq (14) is a function of only one
field, the distance  along this direction. Then, Eq (18)
suggests that the potential of  is a sum of two cosines
with di↵erent amplitudes and periods.

2. Flux independence of the slope of fixed direction

The coe�cients of � and ⌫1 in Eq (13) are clearly
flux dependent, hence, by changing the fluxes, we could
change the slope of the line in � � ⌫1 plane. Now con-
sider the line in (f��, f⌫1⌫1) plane of the canonically nor-
malised fields, the slope of the straight line in Eq (14) is
�(h0f⌫1)/(f�q

1). Using Eq (12), eq (5) and eq (6) (with
q

2 set to 0), we find that this slope is equal to �1/
p
3. I.e

the fixed direction in the space of canonically normalised
fields makes an angle �⇡/6 w.r.t. the positive f�� axis.
Thus, by changing the fluxes, we can not change the ori-
entation of the straight line in the plane of canonically
normalised fields.

3. Obstruction to flat potential

Now, in this context one could think about the poten-
tial along the  direction and its possible flatness. One
of the things we mean when we say that the potential
along the straight line direction Eq (14) is pretty flat is
that it is a cosine with very large period. Suppose that
one of decay constants among f

s
 and f

u1
 , say the latter,

is very large and that s is large as compared to u1, then,
the amplitude of the first cosine in Eq (18) is exponen-
tially suppressed as compared to the second cosine while
the period of this second cosine is also large, thus, we
could get a direction in which the potential is quite flat.
Note that,

f
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 =

N
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1
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2
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2
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Thus, it appears that if one keeps h0, f0 and V fixed and
increases q1, then for large enough q

1, s stays put while
u1 decreases and f

s
 stays constant while f

u1
 increases.

Thus, a low energy observer might conclude that the first
cosine in Eq (18) shall become suppressed over the second
one while the period of the second one could be made
large, thus, flattening the potential. Furthermore, using
eq (12), eq (5) and eq (6) (with q

2 set to 0), we conclude
that

f

u1
 =

q

1

p
3h0s

, (21)

so that increasing q

1 with fixed s (by holding h0, f0 and
V fixed) will cause f

u1
 as much as we like without any

consequences. This happens to be not true, since it turns
out that

f

s
 =

1p
3s

=
2f�p
3
, (22)

f

u1
 =

p
3

u1
= 2f⌫1 . (23)

Since f

s
 and f

u1
 are simply proportional to the fun-

damental axion decay constants f� and f⌫1 , and since
these fundamental decay constants can not be super-
Planckian, we conclude that f

s
 and f

u1
 shall also re-

main sub-Planckian. even though we could increase f

s
 

and f

u1
 , we can not make them so large that u1 and s

become too small. Since s and u1 are geometric moduli
which determine the sizes and shapes of compactification
manifold, they can not be made too small without leaving
the regime of validity of low energy e↵ective field theory.
For our purpose, we note that the factors relating f

s
 

to f� and f

u1
 to f⌫1 are O(1) numbers. We shall see that

in two-axion limit of three-axion case, there is additional
freedom which can cause these factors to be very large
numbers.

B. The three axion case

In the rest of this subsection, we shall analyse this
possibility and recover the two-axion case. We will find
that the three axion case o↵ers new features and there is
scope for enhancement of decay constant.

1. Diagonalization of Kahler metric

Given the Kahler potential, the metric in the scalar
field space can be found from

Kij̄ =

✓
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2
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which in the (U1, U2) subspace of the scalar field space
turns out to be
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Can we do it?

‣ Single axion and two instantons
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‣ Can we do it?

3

On the other hand, only the following linear combination
of the axions is fixed by this procedure.

h0� + q

1
⌫1 + q

2
⌫2 = constant . (8)

Here, the two-axion case can be arrived at by setting ⌫2
to zero.

4. Non-perturbative e↵ects

The superpotential generated by fluxes receives non-
perturbative corrections from Euclidean D2-brane in-
stantons, which is of the form

W = Wperturbative +
X

I

AIe
�aI

0S�aI
�U�

, (9)

Given this generic form of the superpotential and the
Kahler potential given in Eq (3), one can easily find the
scalar potential by using Eq (2). For the correct choices
of aI0 and a

I
�, the potential would be of the form shown

in Eq (11) below. These choices are determined by the
choice of the compactification manifold.

III. ENHANCEMENT OF AXION DECAY
CONSTANT

In this section, we shall attempt to enhance axion de-
cay constant in the set up of IIA theory presented in the
last section. This problem was studied in ref [38] which
we closely follow. As we shall see, there are important
new lessons to be learnt even in the simple case of a
CY3 which is mirror to P[1,1,6,9] manifold [43], for which
h

2,1 = 2 and there are three RR axions.
To begin with, however, we remind ourselves of how to

deal with a slightly di↵erent situation, the two-axion case
mentioned in the last section i.e. mirror of the quintic

for which h

2,1 = 1 and V 0 = u

3/2
1 . This case has already

been studied in [38], but as we shall see, there are im-
portant observations to be made in order to study the
more interesting case of mirror to P[1,1,6,9] with h

2,1 = 2
i.e. the three axion case. In [38], the author only briefly
mentions the three axion case (in particular, in [38] only
the two-axion limit of the three axion case is mentioned).
In the upcoming subsection, we revisit the two axion case
while in the sub section after that, we analyse the three
axion case.

A. The two-axion (i.e. h2,1 = 1) case

In this case, the fluxes we could vary (to understand
axion dynamics) are q

1
, f0, h0 and we could think of the

volume of the compactification manifold V as another
“free parameter.” The values of moduli s and u1 can be
found in terms of these variables.

1. Basics

Here, V 0 can be obtained from Eq (4) by setting u2 = 0
and so, using the equations presented in §II 1, we can
show that

KSS̄ =
1

4s2
, KU1Ū1

=
3

4u2
1

, (10)

At low energies, we can think of s and u1 as fixed
quantities, the Lagrangian determining the dynamics of
the remaining low energy fields is given by (see e.g. [38])

L = � f

2
�(@�)

2 � f

2
⌫1
(@⌫1)

2 �
h
V0 +A

0
e

�s(1� cos�)

+ B

0
e

�u1(1� cos ⌫1)
i
, (11)

where, the potential for the axions is generated by non-
perturbative e↵ects. On comparing Eq (1), Eq (10) and
Eq (11), we find that f� is dependent on s while f⌫1 is
dependent on u1 i.e.

f� =
1

2s
, f⌫1 =

p
3

2u1
. (12)

Needless to say, the canonically normalised axions are
f�� and f⌫1⌫1. Ignoring the non-perturbative e↵ects, at
leading order in ↵0 and gs, the linear combination h0�+
q

1
⌫1 is fixed, by redefining the fields, one could ensure

that

h0� + q

1
⌫1 = 0 . (13)

In the (f��, f⌫1⌫1) plane of the canonically normalised
fields, this describes a straight line passing through the
origin i.e.

✓
h0

f�

◆
f�� +

✓
q

1

f⌫1

◆
f⌫1⌫1 = 0 . (14)

The slope of this line is given by �(h0f⌫1)/(f�q
1) and

the two direction cosines of the line are

`� =
q1f�

N

, (15)

`⌫1 = �
✓
h0f⌫1

N

◆
, (16)

where, N =
p
f

2
�(q

1)2 + f

2
⌫1
(h0)2. At this stage, it is

worth recalling that in N�dimensional Euclidean space
with Cartesian coordinates (x1, x2, . . . , xN ), the distance
r along any straight line passing through the origin (and
with direction cosines (`1, . . . , `N )) is r = `1x1 + · · · +
`NxN . If we now call  to be the distance along the
direction described by line Eq (14), one finds that

� =

✓
q

1

N

◆
 , ⌫1 =

✓�h0

N

◆
 . (17)

If we go along the straight line direction Eq (14), non-
perturbative e↵ects shall generate a potential which can
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Weak Gravity Conjecture for axions

‣ Weak Gravity Conjecture for axions… 
‣  An axion with decay constant f must couple to instantons with 

action S, such that

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

A ⇠ e

h
�
⇣

µ2
gs

R
⌃3

d3x
p

det(G)+iµ2

R
⌃3

C3

⌘i

(34)

A ⇠ e

⇣
�TpVol(⌃3)+iµ2

R
⌃3

C3

⌘

(35)

A ⇠ e�TpVol(⌃3)+iµ2

R
⌃3

C3 (36)

fS  Mp (37)

V (�) ⇠ e�S1 cos

✓
�

f
1

◆
+ e�S2 cos

✓
�

f
2

◆
(38)

 (39)

26

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

A ⇠ e

h
�
⇣

µ2
gs

R
⌃3

d3x
p

det(G)+iµ2

R
⌃3

C3

⌘i

(34)

A ⇠ e

⇣
�TpVol(⌃3)+iµ2

R
⌃3

C3

⌘

(35)

A ⇠ e�TpVol(⌃3)+iµ2

R
⌃3

C3 (36)

fS  Mp (37)

L(a) � �f2(@a)2 � ⇤4

1X

n=1

e�nS (1� cos(na)) (38)

 (39)

26

‣  If f is large, S must be small, so, higher order instanton 
corrections can’t be ignored, 
‣  this limits the “flat” or monotonic regions in potential, 
‣  Obviously deep implications for inflation!



Strong form of axionic WGC

‣ for any axion  
‣ there must always be an instanton where the axion appears with a decay 

constant that is sub-Planckian,  
‣what is the action of this instanton? the action can be very large  
‣ this effect becomes an insignificant modification of the low-energy 

potential.  
‣ The strong form of the WGC:  
‣ this sub-Planckian instanton must have an action less than that of the 

super-Planckian instanton responsible for the inflaton potential, and so it 
forms the dominant contribution to the potential. 

  E. Palti “On Natural Inflation and Moduli Stabilisation in String Theory,”
  JHEP 1510, 188 (2015) [arXiv:1508.00009 [hep-th]].

A ⇠ e�SE (32)

V (�) = ⇤4

1

1X

n=1

e�nS1


1� cos

✓
n�

f

◆�
(33)

A ⇠ e

h
�
⇣

µ2
gs

R
⌃3

d3x
p

det(G)+iµ2

R
⌃3

C3

⌘i

(34)

A ⇠ e

⇣
�TpVol(⌃3)+iµ2

R
⌃3

C3

⌘

(35)

A ⇠ e�TpVol(⌃3)+iµ2

R
⌃3

C3 (36)

V (�) ⇠ e�S1 cos

✓
�

f
1

◆
+ e�S2 cos

✓
�

f
2

◆
(37)

 (38)

26



Is it really true?

‣ Worth understanding better! 
‣ Choose CY s.t. one more axion present, 
‣ Diagonalise Kahler metric, low energy theory

‣Explore various directions in field space (the spirit of KNP!), 
‣ In terms of the displacement field…
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G. Goswami “Enhancement of axion decay constants in type IIA theory,” 
arXiv:1812.11909 [hep-th].
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which, when expressed in terms of the field  is
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Comparing Eq (39) with Eq (40) and using Eqs (36),
(37), (38), one can thus read-o↵ the e↵ective decay con-
stants,

f

s
 =

✓
f�

`�

◆
, (41)

f

u1
 =


detP f⌫̃1f⌫̃2

P22`⌫̃1f⌫̃2 � P21`⌫̃2f⌫̃1

�
, (42)

f

u2
 =


detP f⌫̃1f⌫̃2

P11`⌫̃2f⌫̃1 � P12`⌫̃1f⌫̃2

�
. (43)

This set of equations tell us that in (f��, f⌫̃1 ⌫̃1, f⌫̃2 ⌫̃2)
space of canonically normalised fields, if we go along a
direction with direction cosines (`�, `⌫̃1 , `⌫̃2) and if the
distance travelled is the field  , the potential experiences
is given by the term in square brackets in Eq (40), where,
the three e↵ective axion decay constants fs

 , f
u1
 and f

u2
 

are given by the above equation. It is worth noting that
in the above Eq, the matrix elements of P depend on the
fluxes while, as mentioned above, the direction cosines
depend on fluxes as well as ✓. An important questions
worth answering is could there be choices of fluxes and ✓
which enhance the e↵ective decay constants?

3. A few useful remarks

When our search direction is perpendicular to � axis,
we are in the region of field space where � = 0 and the
scalar potential does not depend on �. Perpendicularity
to � axis also implies that `� is zero. So, in Eq (31),
on LHS, `� = 0 and on RHS, � = 0 (as we are in the
plane perpendicular to � axis. In such a case, Eq (31)
becomes indeterminate and we do not expect to find f

s
 

from Eq (41). Similarly, it is possible that for a fixed
choice of fluxes, we happen to be exploring a direction
such that the denominator in Eq (42) or Eq (43) becomes
zero. Leaving such special cases where the denominator
vanishes exactly, one could still ask whether there can be
an enhancement of the e↵ective decay constants.

Following the discussion at the beginning of §IIIA 3,
an important point worth noting is that in Eq (40), even
if one of the decay constants, say f

u1
 is large enough, in

order to have a flat potential, we must also ask whether s
and u2 are large enough that the contribution of their po-
tentials (which will relatively more oscillatory since their
decay constants are smaller) in the complete potential
would be unimportant. If this can not be ensured, then,

ν2

σ

ν1θ
ψ
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FIG. 1: For the fixed choice of fluxes mentioned in the text, we
can explore di↵erent directions in field space by numerically
implementing the formalism described in §III B 2. As we vary
the angle ✓, we get enhancement in all three e↵ective decay
constants fs

 , f
u1
 and fu2

 . The dotted green horizontal line
is the value f�, the dashed orange horizontal line is f⌫̃1 while
the dot-dashed blue horizontal line is the value of f⌫̃2 . Notice
that when ✓ is zero, we get roughly recover the two-axion
limit. The vertical lines correspond to ✓ being ⇡/2, ⇡ and
3⇡/2.

even if one of the decay constants, say f

u1
 is large, we

won’t get a flat potential. Suppose we choose the flux
values such that e.g. u2 and s are su�ciently large as
compared to u1, then the potential will be mostly domi-
nated by the axion ⌫1. For such a fixed choice of fluxes,
one could go along any direction in field space (starting
from the origin). If the direction cosines of the search
direction happen to be such that the denominator in Eq
(42) becomes small, then, we could have an enhancement
of fu1

 as well as get an actual flat potential. From Eq
(39), it is easy to see that the mass of each axion would
be given by

m

2
i ⇠ e

�ui

f

2
i

, (44)

and typically, fi ⇠ 1/ui, thus, m2
i ⇠ u

2
i e

�ui , thus, large
vev shall make the axions light (because of the exponen-
tial factor). Thus, it is conceivable that the potential can
be flattened by this procedure. In fig (2), we have shown
an example of this phenomenon.

4. Recovering the two-axion case

Starting from the formalism of three-axion case, one
should be able to recover the two-axion case in some
limit. This limiting case was briefly mentioned in [38]
but we will find new e↵ects not studied there. When

5

We now restrict our attention to the subspace of (U1, U2)
which is spanned by (⌫1, ⌫2). In this two dimensional
subspace, notice that the metric still depends on the vev
of the moduli u1 and u2.

Given the Kahler metric Kij̄(u1, u2), we could find its
eigenvalues (which we call f2

⌫̃1
and f

2
⌫̃2
) and eigenvectors.

If one performs a change of basis such that the eigen-
vectors are used as the basis vectors, then the metric in
the new basis is diagonal. One can then make an ad-
ditional anisotropic scaling transformation to turn the
metric into an identity matrix. Let the normalised eigen-
vectors of the metric be denoted by ⌫̃1 and ⌫̃2 and let P
be the matrix of change of basis from (⌫1, ⌫2) to (⌫̃1, ⌫̃2),
i.e.

⌫i = Pij ⌫̃j , (26)

since the metric is real-symmetric, P must be an orthog-
onal transformation. One must note that all these quan-
tities depend on the moduli (u1, u2) which themselves
depend on the fluxes.

2. Search directions and enhancement

Perturbative moduli stabilisation ensures that a plane
in the (�, ⌫1, ⌫2) space stays unfixed.

h0� + q

1
⌫1 + q

2
⌫2 = 0 , (27)

Using Eq (26) and after scaling, this implies that

✓
h0

f�

◆
(f��) +

✓
q

1
P11 + q

2
P21

f⌫̃1

◆
(f⌫̃1 ⌫̃1)

+

✓
q

1
P12 + q

2
P22

f⌫̃2

◆
(f⌫̃2 ⌫̃2) = 0 , (28)

where, we have simply rewritten the previous equation
in terms of normalised eigenvectors of the Kahler metric.
This normalisation o↵-course also canonically normalises
the axions we work with i.e. the fields f��, f⌫̃1 ⌫̃1 and
f⌫̃2 ⌫̃2 are the canonically normalised axions. Needless to
say, in the above equation f� is a function of s while f⌫̃i

and Pij are functions of (u1, u2).
Now, Eq (28) describes a plane in the

(f��, f⌫̃1 ⌫̃1, f⌫̃2 ⌫̃2) space of canonically normalised
fields and from its defining equation, one can easily read
o↵ the components of the unit vector normal to the
plane. Consider the line common between the plane Eq
(28) and the plane ⌫̃2 = 0. Obviously, the equation of
this line is given by

✓
h0

f�

◆
(f��) +

✓
q

1
P11 + q

2
P21

f⌫̃1

◆
(f⌫̃1 ⌫̃1) = 0 . (29)

This is a direction in (f��, f⌫̃1 ⌫̃1) plane and one could go
along this direction and ask whether the potential gener-
ated by non-perturbative e↵ects could be su�ciently flat.

In order to explore the other search directions, one could
begin with a unit vector along the line given by the above
equation and make a rotation by an angle ✓ about the axis
which is normal to the plane. For any choice of this angle
✓, there will be a new search direction. Let the direction
cosines of this new search direction be (`�, `⌫̃1 , `⌫̃2), no-
tice that these direction cosines depend on ✓ in addition
to depending on the fluxes. Since the search direction lies
in the plane described by Eq (28), its direction cosines
must satisfy the equation of the plane (since the plane
passes through the origin)

✓
h0

f�

◆
`� +

✓
q

1
P11 + q

2
P21

f⌫̃1

◆
`⌫̃1

+

✓
q

1
P12 + q

2
P22

f⌫̃2

◆
`⌫̃2 = 0 . (30)

Now, let  be the distance along the search direction,
then, since (`�, `⌫̃1 , `⌫̃2) are direction cosines (recall, dis-
cussion just before eq (17)),

`� = f�� , (31)

`⌫̃1 = f⌫̃1 ⌫̃1 , (32)

`⌫̃2 = f⌫̃2 ⌫̃2 . (33)

Now, re-expressing the above relations in terms of the
original axions ⌫1, ⌫2 tells us that

(P�1)11⌫1 + (P�1)12⌫2 =

✓
`⌫̃1

f⌫̃1

◆
 , (34)

(P�1)21⌫1 + (P�1)22⌫2 =

✓
`⌫̃2

f⌫̃2

◆
 , (35)

the above two equations can be used to solve for ⌫1 and
⌫2 in terms of  , thus one gets (using the orthogonality
of P )

� =

✓
`�

f�

◆
 , (36)

⌫1 =


P22`⌫̃1f⌫̃2 � P21`⌫̃2f⌫̃1

detP f⌫̃1f⌫̃2

�
 , (37)

⌫2 =


P11`⌫̃2f⌫̃1 � P12`⌫̃1f⌫̃2

detP f⌫̃1f⌫̃2

�
 . (38)

One expects that, after the diagonalisation of Kahler
metric, the low energy e↵ective theory is given by

L = � 1

2
f

2
�(@�)

2 � 1

2
f

2
⌫̃1
(@⌫̃1)

2 � 1

2
f

2
⌫̃1
(@⌫̃1)

2

�
h
V0 +A

0
e

�s(1� cos�) +B

0
e

�u1(1� cos ⌫̃1)

+ C

0
e

�u2(1� cos ⌫̃2)
i
, (39)
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which, when expressed in terms of the field  is

L = �1

2
(@ )2 �

"
V

0
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0
e
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1� cos

 

f

s
 

!

+B

0
e

�u1

 
1� cos

 

f

u1
 

!
+ C

0
e

�u2

 
1� cos

 

f

u2
 

!#
,

(40)

Comparing Eq (39) with Eq (40) and using Eqs (36),
(37), (38), one can thus read-o↵ the e↵ective decay con-
stants,

f

s
 =

✓
f�

`�

◆
, (41)

f

u1
 =


detP f⌫̃1f⌫̃2

P22`⌫̃1f⌫̃2 � P21`⌫̃2f⌫̃1

�
, (42)

f

u2
 =


detP f⌫̃1f⌫̃2

P11`⌫̃2f⌫̃1 � P12`⌫̃1f⌫̃2

�
. (43)

This set of equations tell us that in (f��, f⌫̃1 ⌫̃1, f⌫̃2 ⌫̃2)
space of canonically normalised fields, if we go along a
direction with direction cosines (`�, `⌫̃1 , `⌫̃2) and if the
distance travelled is the field  , the potential experiences
is given by the term in square brackets in Eq (40), where,
the three e↵ective axion decay constants fs

 , f
u1
 and f

u2
 

are given by the above equation. It is worth noting that
in the above Eq, the matrix elements of P depend on the
fluxes while, as mentioned above, the direction cosines
depend on fluxes as well as ✓. An important questions
worth answering is could there be choices of fluxes and ✓
which enhance the e↵ective decay constants?

3. A few useful remarks

When our search direction is perpendicular to � axis,
we are in the region of field space where � = 0 and the
scalar potential does not depend on �. Perpendicularity
to � axis also implies that `� is zero. So, in Eq (31),
on LHS, `� = 0 and on RHS, � = 0 (as we are in the
plane perpendicular to � axis. In such a case, Eq (31)
becomes indeterminate and we do not expect to find f

s
 

from Eq (41). Similarly, it is possible that for a fixed
choice of fluxes, we happen to be exploring a direction
such that the denominator in Eq (42) or Eq (43) becomes
zero. Leaving such special cases where the denominator
vanishes exactly, one could still ask whether there can be
an enhancement of the e↵ective decay constants.

Following the discussion at the beginning of §IIIA 3,
an important point worth noting is that in Eq (40), even
if one of the decay constants, say f

u1
 is large enough, in

order to have a flat potential, we must also ask whether s
and u2 are large enough that the contribution of their po-
tentials (which will relatively more oscillatory since their
decay constants are smaller) in the complete potential
would be unimportant. If this can not be ensured, then,
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σ

ν1θ
ψ
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Normal'
to'

plane'

FIG. 1: For the fixed choice of fluxes mentioned in the text, we
can explore di↵erent directions in field space by numerically
implementing the formalism described in §III B 2. As we vary
the angle ✓, we get enhancement in all three e↵ective decay
constants fs

 , f
u1
 and fu2

 . The dotted green horizontal line
is the value f�, the dashed orange horizontal line is f⌫̃1 while
the dot-dashed blue horizontal line is the value of f⌫̃2 . Notice
that when ✓ is zero, we get roughly recover the two-axion
limit. The vertical lines correspond to ✓ being ⇡/2, ⇡ and
3⇡/2.

even if one of the decay constants, say f

u1
 is large, we

won’t get a flat potential. Suppose we choose the flux
values such that e.g. u2 and s are su�ciently large as
compared to u1, then the potential will be mostly domi-
nated by the axion ⌫1. For such a fixed choice of fluxes,
one could go along any direction in field space (starting
from the origin). If the direction cosines of the search
direction happen to be such that the denominator in Eq
(42) becomes small, then, we could have an enhancement
of fu1

 as well as get an actual flat potential. From Eq
(39), it is easy to see that the mass of each axion would
be given by

m

2
i ⇠ e

�ui

f

2
i

, (44)

and typically, fi ⇠ 1/ui, thus, m2
i ⇠ u

2
i e

�ui , thus, large
vev shall make the axions light (because of the exponen-
tial factor). Thus, it is conceivable that the potential can
be flattened by this procedure. In fig (2), we have shown
an example of this phenomenon.

4. Recovering the two-axion case

Starting from the formalism of three-axion case, one
should be able to recover the two-axion case in some
limit. This limiting case was briefly mentioned in [38]
but we will find new e↵ects not studied there. When

Is it really true?

‣  Perturbatively flat plane, 
‣  Initial direction, rotation, explore all directions in the plane, 
‣  One more “parameter”: the angle of rotation.

G. Goswami “Enhancement of axion decay constants in type IIA theory,” 
arXiv:1812.11909 [hep-th].
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which, when expressed in terms of the field  is
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(40)

Comparing Eq (39) with Eq (40) and using Eqs (36),
(37), (38), one can thus read-o↵ the e↵ective decay con-
stants,

f

s
 =

✓
f�

`�

◆
, (41)

f

u1
 =


detP f⌫̃1f⌫̃2

P22`⌫̃1f⌫̃2 � P21`⌫̃2f⌫̃1

�
, (42)

f

u2
 =


detP f⌫̃1f⌫̃2

P11`⌫̃2f⌫̃1 � P12`⌫̃1f⌫̃2

�
. (43)

This set of equations tell us that in (f��, f⌫̃1 ⌫̃1, f⌫̃2 ⌫̃2)
space of canonically normalised fields, if we go along a
direction with direction cosines (`�, `⌫̃1 , `⌫̃2) and if the
distance travelled is the field  , the potential experiences
is given by the term in square brackets in Eq (40), where,
the three e↵ective axion decay constants fs

 , f
u1
 and f

u2
 

are given by the above equation. It is worth noting that
in the above Eq, the matrix elements of P depend on the
fluxes while, as mentioned above, the direction cosines
depend on fluxes as well as ✓. An important questions
worth answering is could there be choices of fluxes and ✓
which enhance the e↵ective decay constants?

3. A few useful remarks

When our search direction is perpendicular to � axis,
we are in the region of field space where � = 0 and the
scalar potential does not depend on �. Perpendicularity
to � axis also implies that `� is zero. So, in Eq (31),
on LHS, `� = 0 and on RHS, � = 0 (as we are in the
plane perpendicular to � axis. In such a case, Eq (31)
becomes indeterminate and we do not expect to find f

s
 

from Eq (41). Similarly, it is possible that for a fixed
choice of fluxes, we happen to be exploring a direction
such that the denominator in Eq (42) or Eq (43) becomes
zero. Leaving such special cases where the denominator
vanishes exactly, one could still ask whether there can be
an enhancement of the e↵ective decay constants.

Following the discussion at the beginning of §IIIA 3,
an important point worth noting is that in Eq (40), even
if one of the decay constants, say f

u1
 is large enough, in

order to have a flat potential, we must also ask whether s
and u2 are large enough that the contribution of their po-
tentials (which will relatively more oscillatory since their
decay constants are smaller) in the complete potential
would be unimportant. If this can not be ensured, then,

ν2

σ

ν1θ
ψ
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FIG. 1: For the fixed choice of fluxes mentioned in the text, we
can explore di↵erent directions in field space by numerically
implementing the formalism described in §III B 2. As we vary
the angle ✓, we get enhancement in all three e↵ective decay
constants fs

 , f
u1
 and fu2

 . The dotted green horizontal line
is the value f�, the dashed orange horizontal line is f⌫̃1 while
the dot-dashed blue horizontal line is the value of f⌫̃2 . Notice
that when ✓ is zero, we get roughly recover the two-axion
limit. The vertical lines correspond to ✓ being ⇡/2, ⇡ and
3⇡/2.

even if one of the decay constants, say f

u1
 is large, we

won’t get a flat potential. Suppose we choose the flux
values such that e.g. u2 and s are su�ciently large as
compared to u1, then the potential will be mostly domi-
nated by the axion ⌫1. For such a fixed choice of fluxes,
one could go along any direction in field space (starting
from the origin). If the direction cosines of the search
direction happen to be such that the denominator in Eq
(42) becomes small, then, we could have an enhancement
of fu1

 as well as get an actual flat potential. From Eq
(39), it is easy to see that the mass of each axion would
be given by

m

2
i ⇠ e

�ui

f

2
i

, (44)

and typically, fi ⇠ 1/ui, thus, m2
i ⇠ u

2
i e

�ui , thus, large
vev shall make the axions light (because of the exponen-
tial factor). Thus, it is conceivable that the potential can
be flattened by this procedure. In fig (2), we have shown
an example of this phenomenon.

4. Recovering the two-axion case

Starting from the formalism of three-axion case, one
should be able to recover the two-axion case in some
limit. This limiting case was briefly mentioned in [38]
but we will find new e↵ects not studied there. When

Is it really true?
‣  There exist search directions 

which are flat directions, 
‣  Fluxes don’t have to be adjusted, 

search direction to be chosen, 
‣  When there are more axions, 

there are many more parameters  
available to specify a direction

G. Goswami “Enhancement of axion decay constants in type IIA theory,” 
arXiv:1812.11909 [hep-th].
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FIG. 3: For the fixed choice of fluxes mentioned in the text, we can explore di↵erent directions in field space by numerically
implementing the formalism described in §III B 2. As we vary the angle ✓, we get enhancement in all three e↵ective decay
constants fs

 , f
u1
 and fu2

 . The dotted green horizontal line is the value f�, the dashed orange horizontal line is f⌫̃1 while the
dot-dashed blue horizontal line is the value of f⌫̃2 . Notice that when ✓ is zero, we get roughly recover the two-axion limit. The
vertical lines correspond to ✓ being ⇡/2, ⇡ and 3⇡/2.

IV. DISCUSSION

In this work, we tried to find directions in RR axion
field space such that the scalar potential along the direc-
tion is su�ciently flat. This is done by (a) making sure
that the e↵ective decay constant due to one of the axions
is large and (b) the vev of the saxion corresponding to
the rest of axions are so large that their contribution to
the scalar potential is negligible. We found that this can
always be done for any fixed choice of fluxes. Note that
just because there is a straight-line direction in axion
field space along which the potential is su�ciently flat,
it does not mean that the motion in field space would be
along that direction. Moreover, when the number of RR
axions in the model is larger than three, we will have a
lot more freedom to enhance the decay constant by the
approach presented in this paper. Also, note that the
type IIA flux vacua we have been dealing with are AdS,
one must check what uplifting will do to the enhancement
described here. Thus, one needs to understand uplifting
mechanisms better before one can make any statements
about large field inflation based on the work of this paper.

At this stage, one must mention some of the con-
cerns expressed in the literature about the validity of
these solutions [24–34]. Since in such constructions one

works with massive type IIA supergravity (supplemented
with orientifold 6-plane sources), the corresponding Ro-
mans mass parameter does not dilute in the large volume
limit, this has inspired doubts about the validity of these
constructions. In addition to these problems with ex-
panding around a non-solution like a Calabi-Yau metric
or the concerns about defining O6-planes [24], one also
finds that the solutions of [16] do not solve the massive
IIA supergravity equations of motion even approximately
[28] (as required for large volume, weakly-coupled back-
grounds).
Blow-up modes or twisted moduli?
Uncertainty due to the use of E2 brane instantons?
Tadpole conditions;
It must also be mentioned that we have not taken into

account the backreaction caused by Kahler moduli as
pointed out in [40] very recently. Among the most impor-
tant issues being explored in the recent literature is the
question whether one could obtain super-Planckian axion
decay constants in controlled regimes of string theory. In
this paper, however, we have deliberately not said any-
thing about super-Planckian decay constants. We have
presented a way to realise large e↵ective decay constants
which has the attractive feature that it works even if the
fluxes are completely fixed. So, if the fluxes are fixed to
acceptable values such that we are in a well-controlled

G. Goswami “Enhancement of axion decay constants in type IIA theory,” 
arXiv:1812.11909 [hep-th].



• found directions in axion field space such that the scalar potential 
along the direction is sufficiently flat 

• making sure that the effective decay constant due to one of the 
axions is large, 

• the vev of the saxion corresponding to the rest of axions are so 
large that their contribution to the scalar potential is negligible. 

• this can always be done for any fixed choice of fluxes, 

• Strong form of axionic WGC violated? 

• will the field actually go along such a straight line trajectory (though 
its dynamics is determined by, among other things, its potential)?

Enhancement…





• Flat directions: higher order corrections need to be 
taken into account, so avoid, 

• work with the appropriate solution, 

• Consider directions in which the field actually rolls:  

• direction of eigenvector of Hessian with smaller 
eigenvalue, 

• Work with “Cartesian coordinates” in field space. 

• Closer in spirit to original KNP mechanism. 

Retry?
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Large f ?

‣ A very explicit realisation of the alignment 
mechanism, 
‣ Still freedom left to adjust fluxes, 
‣ The “decay constants” are completely known in terms 
of fluxes; 
‣ Look for a combination of fluxes which gives a large 
effective decay constant; 
‣ Tried 20,100 combinations of fluxes (in the regime of 
validity of calculations), 
‣ The maximum value found is 0.66, 
‣ I.e.  
‣freedom to adjust fluxes to change the values of the 
individual decay constants,  
‣cannot make effective decay constant super-Planckian.



broader issues: 



Restrictions and obstructions

‣ Finding similar restrictions/obstructions is routine, 
‣ Many kinds of restrictions known, 
‣ Focus on those about scalar potentials: important for 

cosmology!



E.g.



String vacua are dirty!

‣ We do not know full string theory! 
‣ Trustworthy regimes: 
‣ large volume, small string length, 
‣ small string coupling (but too small not useful),  
‣ Hierarchy of scales: 
‣  
‣ Make many assumptions/approximations, 
‣ probe brane approximation, 
‣ large charge approximation, 
‣ Mode truncation, 
‣ Every term in 4D effective action needs to be 

understood in terms of its stringy origin,

4 Recent activities

4.1 31 August 2018: the various conjectures etc

1. Censorship of large field excursion (note that �� can be expressed in terms of r or in terms of the axion
decay constant), e.g.

• large axion decay constant in realisations of natural inflation in QFT;

– the e↵ects of gravitational instantons

• large axion decay constant in realisations of natural inflation in string theory;

• the corresponding results for axion monodromy inflation (e.g. F-term axion monodromy inflation):

– control over trans-Planckian regime requires us to violate at least one of the hierarchies in the
following:

Mpl > Ms > MKK > M
mod

> H
inf

> M
inf

. (25)

Why is it so important to maintain this hierarchy?

– the backreaction of the rolling axion on other moduli is large, flattening the the potential (and
hence lowering r),

– if one finds the proper distance in field space, the backreacted proper field distance scales loga-
rithmically with the axion ✓ (or the flux?);

– Swampland conjecture: if one moves over very large distance in the moduli space of an e↵ective
quantum gravity theory, there appears an infinite tower of states whose mass scales as m ⇠
m

0

exp(���⇥), here, ⇥ is the proper field and for �⇥ > ��1, the e↵ective theory breaks down;

– testing swampland conjecture in various string compactifications;

– Probably red herring: it is preferable that the following issues are addressed in any realistic model
of inflation, but “often”, one can see the above problems without addressing them completely:

⇤ Obtaining dS vacua; the recent papers by Palti are about AdS vacuua;

⇤ Stabilizing “all” the moduli? e.g. the original Banks, Dine Gorbatov paper (0303252) does
not stabilize all the moduli;

– Does this censorship of trans-Planckian field excursion work only at leading order in ↵0? No,
because LVS moduli stabilization uses ↵0 corrections and their inflationary models also seem to
get an upper bound on the field excursion;

•
2. the weak gravity conjecture

• Absence of global symmetries,

• In a theory with U(1) gauge symmetry, with coupling g, there must exist a charged particle with
charge q and mass m

WGC

such that
qgMp � m

WGC

. (26)

• extended from point particles to instantons (see e.g. introduction of 1610.00010): If S is the Euclidean
action of an instanton coupling to an axion, q is the instanton number, f is the axion decay constant,
then

Sf  qMp . (27)

Calculational control requires S > 1, thus, axion period must be sub-Planckian.

• Sublattice Weak Gravity Conjecture

• Tower Weak Gravity Conjecture

• Magnetic WGC

40



 Obstructions

‣ Restrict to solutions which are “trustworthy”, 
‣ Result: 
‣ No dS local minima, 
‣ one of the two potential slow roll parameters large, 
‣ Even in AdS vacua,  
‣ no super-Planckian decay constants for axions, 
‣ 4D description valid? separation of scales, 
‣ distance conjecture, 
‣ restrictions on large field inflation? 
‣ Caveat: leading order, 
‣ But there are more general reasons for the validity 
‣Weak Gravity Conjecture etc; 
‣ Trans-Planckian censorship conjecture,



 Cosmological consequences…



Swampland, Axions and Minimal Warm Inflation

Gaurav Goswamia,⇤ and Chethan Krishnanb,†
a School of Engineering and Applied Science, Ahmedabad University, Ahmedabad 380009, India

b Center for High Energy Physics, Indian Institute of Science, Bangalore 560012, India

Warm inflation has been noted previously as a possible way to implement inflationary models
compatible with the dS swampland bounds. But often in these discussions the heat bath dynamics
is kept largely unspecified. We point out that the recently introduced Minimal Warm Inflation
of arXiv:1910.07525, where an axionic coupling of the inflaton leads to an explicit model for the
thermal bath, yields models of inflation that can easily fit cosmological observations while satisfying
dS swampland bounds, as well as swampland distance bound and trans-Planckian censorship.

I. INTRODUCTION

Which low energy e↵ective theories can arise from a
UV complete theory of quantum gravity (such as string
theory), is a question of both theoretical and phenomeno-
logical interest [1–4]. In particular, inspired by the dif-
ficulty of realizing inflation and/or de-Sitter vacua in
string theory, it has recently been conjectured that scalar
potentials whose potential slow-roll parameters are small,
cannot be realised in (asymptotic regimes of) string the-
ory [5–7]. Since the slow roll conditions are crucial for
conventional models of inflation, if one wants to have
inflation in such regimes, one must explore alternative
models. One simple way to achieve su�cient amounts
of inflation, even for steep potentials, is to employ the
“warm inflation” mechanism in the strongly dissipative
regime (see [8, 9] for some early papers and [10, 11] for re-
view). In the warm inflation paradigm, the inflaton loses
its energy to a thermal bath. Its utility for swampland
purposes has been noted previously [12–17]

On the other hand, while warm inflation has been stud-
ied for a long time as an interesting possibility, realising
it in concrete models has been a challenge (see e.g. the
discussion in [18, 19] and references therein). In particu-
lar, any endeavour to realise warm inflation in a strongly
dissipative regime has di�culties because the strong dis-
sipation typically destabilizes the inflationary potential.

Very recently however, a class of concrete models
(“Minimal Warm Inflation”) that realize warm inflation
in the strongly dissipative regime, have been put forward
[20] (see also [19]). Minimal Warm Inflation gives the
inflaton an axionic coupling to non-Abelian gauge fields.
This provides a very simple and possibly viable model of
the thermal bath. Since the inflaton is an axion, its shift
symmetry will protect it from any perturbative backre-
action and hence from acquiring a large thermal mass.
On the other hand, because it is coupled to the gauge
field and since at su�ciently high temperature there are
sphaleron transitions between gauge vacua, there is fric-
tion. The corresponding axion friction coe�cient, ⌥,

⇤
gaurav.goswami@ahduni.edu.in

†
chethan.krishnan@gmail.com

turns out to be [20] (see e.g. section 9.5 of [21] and also
[22–25])

⌥(T ) =
�sp(T )

2f2T
= (↵g, Nc, Nf )↵

5
g
T 3

f2
, (1)

where, T is the temperature of the bath, �sp(T ) is the
sphaleron rate, f is the axion decay constant, ↵g =
g2/(4⇡), g being the Yang-Mills gauge coupling, and  is
a dimensionless quantity which depends on the dimension
of the gauge group (Nc), the representation of fermions
(Nf ) if any, and on the gauge coupling. In addition to
this, the axion has a UV potential that is responsible for
inflation, which softly breaks the shift symmetry without
causing too much backreaction [20].

Since axions and gauge fields are ubiquitous in string
theory, the mechanism of [20] has ingredients which may
be realizable in string theory. But, for many stringy solu-
tions (near the boundary of the landscape), we also know
that the scalar potential violates potential slow-roll as
was first noted in the example of [26]. This raises the fol-
lowing question: could the ingredients used in [20], which
lead to inflation in the specific models studied there, lead
to inflation when one is dealing with the kind of steep
runaway potentials that are ubiquitous at the boundary
of the string landscape?

In this short note, we would like to point out that a
simple model in which the inflaton is an axion and its
UV potential is of the exponential run-away form is a
viable model to achieve warm inflation in the strongly
dissipative regime. We will show that (a) CMB observa-
tional constraints are easily satisfied, (b) the dS swamp-
land bounds are satisfied by construction, (c) the field
excursion can be sub-Planckian so that the requirement
of swampland distance conjecture [27, 28] is satisfied, and
(d) the energy scale of inflation is low enough so that the
recently proposed trans-Planckian censorship conjecture
[29, 30] holds. In the following, we will elaborate on these
claims.

In this paper, our primary focus will be on showing
that enough inflation to simultaneously satisfy observa-
tional data and swampland constraints is possible. In a
concluding section, we will comment on what it takes for
our scenario to be turned into a full cosmological model.
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FIG. 1: This plot shows how ↵ and ✏V depend on the param-
eter c̃ M2

pl for a fixed value of g⇤ = 16. The values of c̃ smaller
than c̃min (which lie in the shaded region), give a Q⇤ which
does not satisfy Eq (26) and hence should not be considered.

0.07, �� < Mpl, 0.02 < ↵ < 5, Q⇤ � 1, what are the
allowed values of the parameters?

We saw that all the quantities are power functions of
the parameters c̃M2

pl and g̃⇤ with di↵erent powers and
prefactors. By using the above equations, one can easily
arrive at the the powers and prefactors. Thus, if one plots
the logarithm of any of the dependent variables as a func-
tion of the logarithm of any of the independent variables
i.e. c̃M2

pl and g̃⇤, then, one would obtain straight lines
with di↵erent slopes and intercepts for di↵erent quanti-
ties of interest: this will be seen in figs (1), (2) and (3).

Before proceeding, let us note that from the above
Eqs., the ratio of energy density of radiation to that of
potential energy density of inflaton is

⇢⇤R
V⇤

=
c43
c2

g̃
2/7
⇤ . (42)

Thus, this ratio doesn’t depend on c̃ M2
pl (see e.g. row 8

in table (I)). When the Universe is inflating, this ratio is
expected to be small as compared to 1: from the values
of c2 and c3 given in the last section, this is easy to see.
By increasing the number of relativistic species in the

thermal bath, g⇤, one can increase the ratio ⇢⇤
R

V⇤
, but this

increase is very slow, even if g̃⇤ = 1000 (this corresponds
to g⇤ ⇡ 3040), the above ratio is less than 5%.

We now let c̃ change over a large range of values and
note what happens. What should be the range over
which we vary c̃? In Eq (1),  is an O(100) number
(see e.g. [20]), while we expect that the axion decay con-
stant would be sub-Planckian. This implies that unless
↵g is too small, in Eq (16), the quantity c̃ M2

pl will be
a large quantity. This fits well with the fact that in Eq
(40), Q⇤ is required to be a large quantity since we work
in the strongly dissipative regime. But, in Eq (40), the
power of c̃ M2

pl is so small that one needs very large val-

ues of c̃ M2
pl to get reasonably large values of Q⇤. We

thus let c̃ M2
pl change over a huge range: 107 to 1019.
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FIG. 2: This plot shows how the magnitudes of the various
quantities change as we change the parameter c̃ M2

pl for a
fixed value of g̃⇤. The minimum value of c̃ M2

pl is determined
by Eq (43).

In fig (1), we show how the parameter in our potential
↵ and the potential slow roll parameter ✏v change as we
change c̃ M2

pl over its range.
In order to satisfy Eq (26) if we want the minimum

value of Q⇤ to be, say, Qmin
⇤ = 5 ⇤Q3, we find that c̃ M2

pl

must have a lower limit c̃minM2
pl is

c̃ M2
pl � c̃minM2

pl =

✓
Qmin

⇤
c5

· (g̃⇤) 8
203

◆29/6

. (43)

For a fixed g⇤, this will imply a corresponding lower limit
or upper limit on various quantities: this eliminates very
small values of the slow roll parameter. In fig (1), the
range of values of c̃ which give a value of Q⇤ smaller than
Qmin

⇤ is denoted by the shaded region. I.e., if we wish to
obtain the observed values of ns and As and we wish to
be in a strongly dissipative regime, we can not have too
small values of ✏V .
For g⇤ = 16, fig (2) shows the dependence of a few

quantities on the value of c̃M2
pl. Note that, for the entire

range, T⇤ is greater than H⇤: this means that we have
warm inflation. Secondly, the tensor to scalar ratio, r is
unobservably small for the entire range of values.
A quantity which does not depend on g⇤ is the inflaton

field excursion. In fig (3), for every choice of Ncmb, the
value of c̃ M2

pl smaller than the grey dashed vertical line
gets ruled out if we wish to demand that �� be less than
Mpl. Once one chooses a values of c̃ which satisfies this
requirement, all the other ingredients of the model fall in
place.
In table (I), we show the values of all the relevant quan-

tities for three possible choices of c̃. The first column is
for c̃ = c̃min. Since c̃ is expected to be greater than c̃min

the entries in this column are lower limits for possible
values for Q⇤, ↵, ✏, and upper limits for V⇤, T⇤, H⇤, r,
�� and f . The second column, the value of c̃ is chosen

such that V 1/4
⇤ turns out to be 10�10 Mpl (to satisfy the

… in preparation…



Broader summary…
• Future observations would put tight constraints on large field 

inflation, 

• Large field inflation model building is trivial if one is careless 
and cavalier but hopelessly difficult if one is careful, 

• Even one toy model of large field inflation without any 
uncertainties is hard! 

• Large axion decay constant may be forbidden, 

• Restrictions on scalar potential from UV completion? 

• Cosmological consequences.



Thank You


