A physicist's derivation of APS index theorem

Arnab Rudra

(With Atish Dabholkar, Diksha Jain - arXiv:1905.05207)

International Centre for Theoretical Physics
Trieste, Italy
August 20, 2019

Part I: Index theorem

("Number" of eigen-spinors of Dirac operator with zero eigenvalue)

Let's start from the basics of the Dirac operator

- euclidean, compact (without boundary), spin manifold can define Dirac fermion on the manifold
- even-dimensional, orientable manifold to define chirality

So the eigenvalue of $\gamma_{2 n+1}$ is ± 1. It is called chirality. On an even-dimensional, orientable manifold one can define chiral fermion on the manifold.

- euclidean, compact (without boundary), spin manifold can define Dirac fermion on the manifold
- even-dimensional, orientable manifold to define chirality

$$
\begin{aligned}
\gamma_{2 n+1} & =\frac{1}{(2 n)!} \epsilon_{\mu_{1} \cdots \mu_{2 n}} \gamma^{\mu_{1}} \cdots \gamma^{\mu_{2 n}} \\
\left(\gamma_{2 n+1}\right)^{2} & =1
\end{aligned}
$$

So the eigenvalue of $\gamma_{2 n+1}$ is ± 1. It is called chirality. On an even-dimensional, orientable manifold one can define chiral fermion on the manifold.

- consider the Dirac eigenvalue problem

$$
\not D \psi=\lambda \psi
$$

ϕ is the Dirac operator in presence of gauge and/or spin connection

- Define Chiral spinors
- action of Dirac operator flips chirality

$>$ for every eigenspinor of non-zero eigenvalue and positive chirality, there exists an eigenspinor of same eigenvalue and negative chirality.
- consider the Dirac eigenvalue problem

$$
\not D \psi=\lambda \psi
$$

ϕ is the Dirac operator in presence of gauge and/or spin connection

- Define Chiral spinors

$$
\psi_{ \pm}=\mathcal{P}_{ \pm} \psi \quad, \quad \mathcal{P}_{ \pm}=\left(\frac{1 \mp \gamma_{2 n+1}}{2}\right)
$$

- action of Dirac operator flips chirality

- for every eigenspinor of non-zero eigenvalue and positive chirality, there exists an eigenspinor of same eigenvalue and negative chirality.
- consider the Dirac eigenvalue problem

$$
\not \square \psi=\lambda \psi
$$

ϕ is the Dirac operator in presence of gauge and/or spin connection

- Define Chiral spinors

$$
\psi_{ \pm}=\mathcal{P}_{ \pm} \psi \quad, \quad \mathcal{P}_{ \pm}=\left(\frac{1 \mp \gamma_{2 n+1}}{2}\right)
$$

- action of Dirac operator flips chirality

$$
\not \subset \mathcal{P}_{ \pm}=\mathcal{P}_{\mp} \not \square \quad \longleftrightarrow \quad \not \psi_{ \pm}=\lambda \psi_{\mp}
$$

- for every eigenspinor of non-zero eigenvalue and positive chirality, there exists an eigenspinor of same eigenvalue and negative chirality.
- consider the Dirac eigenvalue problem

$$
\not \square \psi=\lambda \psi
$$

D is the Dirac operator in presence of gauge and/or spin connection

- Define Chiral spinors

$$
\psi_{ \pm}=\mathcal{P}_{ \pm} \psi \quad, \quad \mathcal{P}_{ \pm}=\left(\frac{1 \mp \gamma_{2 n+1}}{2}\right)
$$

- action of Dirac operator flips chirality

$$
\not D \mathcal{P}_{ \pm}=\mathcal{P}_{\mp} \not D \quad \longleftrightarrow \quad \not \psi_{ \pm}=\lambda \psi_{\mp}
$$

- for every eigenspinor of non-zero eigenvalue and positive chirality, there exists an eigenspinor of same eigenvalue and negative chirality.
the number of positive (negative) chirality zero mode $n_{+}\left(n_{-}\right)$.
what is the value of the following quantity (Dirac index) ?
index $(\phi)=n_{+}-n_{-}$

Atíyah-Singer in dex theorem
the number of positive (negative) chirality zero mode $n_{+}\left(n_{-}\right)$.
what is the value of the following quantity (Dirac index) ?

$$
\text { index }(\not D)=n_{+}-n_{-}
$$

Atiyah-Singer inndex theorem
the number of positive (negative) chirality zero mode $n_{+}\left(n_{-}\right)$.
what is the value of the following quantity (Dirac index) ?

$$
\text { index }(\not D)=n_{+}-n_{-}
$$

Atiyah-Singer index theorem

Atiyah-Singer index theorem

Consider an even-dimensional, orientable, compact manifold (with no boundary) \mathcal{M}. Let the metric on \mathcal{M} be $g_{\mu \nu}$. And the Riemann
tensor constructed out of metric is

Then the Dirac index in $D=4$, is given by

Topological quantity

Atiyah-Singer index theorem

Consider an even-dimensional, orientable, compact manifold (with no boundary) \mathcal{M}. Let the metric on \mathcal{M} be $g_{\mu \nu}$. And the Riemann tensor constructed out of metric is

Then the Dirac index in $D=4$, is given by

Topological quantity

Atiyah-Singer index theorem

Consider an even-dimensional, orientable, compact manifold (with no boundary) \mathcal{M}. Let the metric on \mathcal{M} be $g_{\mu \nu}$. And the Riemann tensor constructed out of metric is

$$
R_{\mu \nu}^{a b} d x^{\mu} \wedge d x^{\nu}
$$

Then the Dirac index in $D=4$, is given by

Topological quantity

Atiyah-Singer index theorem

Consider an even-dimensional, orientable, compact manifold (with no boundary) \mathcal{M}. Let the metric on \mathcal{M} be $g_{\mu \nu}$. And the Riemann tensor constructed out of metric is

$$
R_{\mu \nu}^{a b} d x^{\mu} \wedge d x^{\nu}
$$

Then the Dirac index in $D=4$, is given by

$$
-\frac{1}{24} \int_{\mathcal{M}} \frac{\operatorname{tr} R \wedge R}{16 \pi^{2}}
$$

Topological quantity

Atiyah-Singer index theorem

Consider an even-dimensional, orientable, compact manifold (with no boundary) \mathcal{M}. Let the metric on \mathcal{M} be $g_{\mu \nu}$. And the Riemann tensor constructed out of metric is

$$
R_{\mu \nu}^{a b} d x^{\mu} \wedge d x^{\nu}
$$

Then the Dirac index in $D=4$, is given by

$$
-\frac{1}{24} \int_{\mathcal{M}} \frac{\operatorname{tr} R \wedge R}{16 \pi^{2}}
$$

Topological quantity

Application of index theorem

- Anomaly is (controlled) quantum violation of a classical symmetry
- Massless Dirac fermion enjoys the following symmetry (Chiral symmetry)

$$
\Psi(x) \longrightarrow \exp \left[\mathbf{i} \gamma_{2 n+1} \theta\right] \Psi(x)
$$

- However, the path integral measure doesn't obey this symmetry. Non-invariance of the measure comes only from the zero mode of the Dirac operator and hence controlled by the index theorem.

Application of index theorem

- Anomaly is (controlled) quantum violation of a classical symmetry
- Massless Dirac fermion enjoys the following symmetry (Chiral symmetry)

$$
\Psi(x) \longrightarrow \exp \left[\mathbf{i} \gamma_{2 n+1} \theta\right] \Psi(x)
$$

- However, the path integral measure doesn't obey this symmetry. Non-invariance of the measure comes only from the zero mode of the Dirac operator and hence controlled by the index theorem.

Application of index theorem

- Anomaly is (controlled) quantum violation of a classical symmetry
- Massless Dirac fermion enjoys the following symmetry (Chiral symmetry)

$$
\Psi(x) \longrightarrow \exp \left[\mathbf{i} \gamma_{2 n+1} \theta\right] \Psi(x)
$$

- However, the path integral measure doesn't obey this symmetry. Non-invariance of the measure comes only from the zero mode of the Dirac operator and hence controlled by the index theorem.

Derivation using supersymmetry

- A quantum mechanical system is defined a Hamiltonian

$$
H|\Psi\rangle=E|\Psi\rangle
$$

- A Supersymmetric QM system is actually a pair* of Quantum mechanical system

Derivation using supersymmetry

- A quantum mechanical system is defined a Hamiltonian

$$
H|\Psi\rangle=E|\Psi\rangle
$$

- A Supersymmetric QM system is actually a pair^ of Quantum mechanical system.

$$
|b\rangle \quad, \quad|f\rangle
$$

It is defined by a super-charge

$$
Q^{2}=H \quad, \quad Q|b\rangle=|f\rangle \quad, \quad Q|f\rangle=|b\rangle
$$

Derivation using supersymmetry

- A quantum mechanical system is defined a Hamiltonian

$$
H|\Psi\rangle=E|\Psi\rangle
$$

- A Supersymmetric QM system is actually a pair^ of Quantum mechanical system.

$$
|b\rangle \quad, \quad|f\rangle
$$

It is defined by a super-charge

$$
Q^{2}=H \quad, \quad Q|b\rangle=|f\rangle \quad, \quad Q|f\rangle=|b\rangle
$$

Derivation using supersymmetry

- A quantum mechanical system is defined a Hamiltonian

$$
H|\Psi\rangle=E|\Psi\rangle
$$

- A Supersymmetric QM system is actually a pair* of Quantum mechanical system.

$$
|b\rangle \quad, \quad|f\rangle
$$

It is defined by a super-charge

$$
Q^{2}=H \quad, \quad Q|b\rangle=|f\rangle \quad, \quad Q|f\rangle=|b\rangle
$$

- For supersymmetric systems, we can define Witten index which roughly counts the number of bosons minus the number of fermions

$$
W(\beta)=\operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]
$$

A path integral derivation

(Witten, Alvarez-Gaume, Friedan, Windey)

- Consider super-symmetric quantum mechanics with one real super-charge whose (bosonic) target space is the compact manifold

$$
\frac{1}{2} \int d t\left[g_{i j}(x) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+\mathbf{i} \delta_{a b} \psi^{a}\left(\frac{d \psi^{b}}{d t}+\omega_{a k b} \frac{d x^{k}}{d t} \psi^{b}\right)\right]
$$

A path integral derivation

(Witten, Alvarez-Gaume, Friedan, Windey)

- Consider super-symmetric quantum mechanics with one real super-charge whose (bosonic) target space is the compact manifold

$$
\frac{1}{2} \int d t\left[g_{i j}(x) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+\mathbf{i} \delta_{a b} \psi^{a}\left(\frac{d \psi^{b}}{d t}+\omega_{a k b} \frac{d x^{k}}{d t} \psi^{b}\right)\right]
$$

Witten index $\equiv \operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]=$ Dirac index

A path integral derivation

(Witten, Alvarez-Gaume, Friedan, Windey)

- Consider super-symmetric quantum mechanics with one real super-charge whose (bosonic) target space is the compact manifold

$$
\frac{1}{2} \int d t\left[g_{i j}(x) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+\mathbf{i} \delta_{a b} \psi^{a}\left(\frac{d \psi^{b}}{d t}+\omega_{a k b} \frac{d x^{k}}{d t} \psi^{b}\right)\right]
$$

Witten index $\equiv \operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]=$ Dirac index

A path integral derivation

(Witten, Alvarez-Gaume, Friedan, Windey)

- Consider super-symmetric quantum mechanics with one real super-charge whose (bosonic) target space is the compact manifold

$$
\frac{1}{2} \int d t\left[g_{i j}(x) \frac{d x^{i}}{d t} \frac{d x^{j}}{d t}+\mathbf{i} \delta_{a b} \psi^{a}\left(\frac{d \psi^{b}}{d t}+\omega_{a k b} \frac{d x^{k}}{d t} \psi^{b}\right)\right]
$$

Witten index $\equiv \operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]=$ Dirac index

Relation between spacetime variable and world-line variables

where

$$
W(\beta)=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} e^{-\beta H}
$$

Dirac index for manifold with boundary

Atiyah-Patodi-Singer index theorem

Variation problem of the Dirac action

The boundary term for the variation of the Dirac action is (roughly) of the form

$$
\int_{\partial \mathcal{M}}\left[\psi_{+} \cdot \delta \psi_{+}-\psi_{-} \cdot \delta \psi_{-}\right]
$$

One can impose (local) boundary condition

Variation problem of the Dirac action

The boundary term for the variation of the Dirac action is (roughly) of the form

$$
\int_{\partial \mathcal{M}}\left[\psi_{+} \cdot \delta \psi_{+}-\psi_{-} \cdot \delta \psi_{-}\right]
$$

One can impose (local) boundary condition

$$
\left.\psi_{+}\right|_{\partial \mathcal{M}}= \pm\left.\psi_{-}\right|_{\partial \mathcal{M}}
$$

Not good for index problem.

Variation problem of the Dirac action

The boundary term for the variation of the Dirac action is (roughly) of the form

$$
\int_{\partial \mathcal{M}}\left[\psi_{+} \cdot \delta \psi_{+}-\psi_{-} \cdot \delta \psi_{-}\right]
$$

One can impose (local) boundary condition

$$
\left.\psi_{+}\right|_{\partial \mathcal{M}}= \pm\left.\psi_{-}\right|_{\partial \mathcal{M}}
$$

Not good for index problem.

Boundary condition I

- Any local boundary doesn't preserve chiral current and hence not good for index problem
- APS invented a non-local boundary condition to define the index problem
- However, this boundary condition can be thought of as a euclidean continuation of Feynman is (scattering) boundary condition.

Boundary condition I

- Any local boundary doesn't preserve chiral current and hence not good for index problem
- APS invented a non-local boundary condition to define the index problem
- However, this boundary condition can be thought of as a euclidean continuation of Feynman is (scattering) boundary condition.

Boundary condition I

- Any local boundary doesn't preserve chiral current and hence not good for index problem
- APS invented a non-local boundary condition to define the index problem
- However, this boundary condition can be thought of as a euclidean continuation of Feynman is (scattering) boundary condition.

Boundary condition II

- For a particular choice of the gamma matrices, the Dirac operator near the boundary can be written as

$$
\left[\begin{array}{cc}
0 & \partial_{u}+\mathcal{B} \\
-\partial_{u}+\mathcal{B} & 0
\end{array}\right]\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]=\sqrt{E}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]
$$

- (say) We diagonalize the boundary operator \mathcal{B}

$$
\mathcal{B} \chi_{\lambda}=\lambda \chi_{\lambda}
$$

- Focus on zero modes $(E=0)$. Locally near the boundary

Boundary condition II

- For a particular choice of the gamma matrices, the Dirac operator near the boundary can be written as

$$
\left[\begin{array}{cc}
0 & \partial_{u}+\mathcal{B} \\
-\partial_{u}+\mathcal{B} & 0
\end{array}\right]\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]=\sqrt{E}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]
$$

- (say) We diagonalize the boundary operator \mathcal{B}

$$
\mathcal{B} \chi_{\lambda}=\lambda \chi_{\lambda}
$$

\rightarrow Focus on zero modes $(E=0)$. Locally near the boundary

Boundary condition II

- For a particular choice of the gamma matrices, the Dirac operator near the boundary can be written as

$$
\left[\begin{array}{cc}
0 & \partial_{u}+\mathcal{B} \\
-\partial_{u}+\mathcal{B} & 0
\end{array}\right]\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]=\sqrt{E}\left[\begin{array}{l}
\Psi_{+} \\
\Psi_{-}
\end{array}\right]
$$

- (say) We diagonalize the boundary operator \mathcal{B}

$$
\mathcal{B} \chi_{\lambda}=\lambda \chi_{\lambda}
$$

- Focus on zero modes $(E=0)$. Locally near the boundary

$$
\Psi_{ \pm}(u)=\sum_{\lambda} \exp [\mp \lambda u] \chi_{\lambda}
$$

Boundary condition III

add a trivial cylinder

Boundary condition III

add a trivial cylinder

Boundary condition III

add a trivial cylinder

APS boundary condition $\longleftrightarrow L_{2}$ normalizability on $\widehat{\mathcal{M}}$

η invariant

Given an operator \mathcal{B} and its eigenvalues

$$
\mathcal{B} \chi_{\lambda}=\lambda \chi_{\lambda} \quad, \quad \lambda \in \mathbb{R}
$$

We can define the following quantity which defines the spectral asymmetry $(\lambda \neq 0)$

Need to introduce a regulator

η invariant

Given an operator \mathcal{B} and its eigenvalues

$$
\mathcal{B} \chi_{\lambda}=\lambda \chi_{\lambda} \quad, \quad \lambda \in \mathbb{R}
$$

We can define the following quantity which defines the spectral asymmetry $(\lambda \neq 0)$

$$
\eta=\sum_{\lambda} \operatorname{sgn}(\lambda)
$$

Need to introduce a regulator

η invariant

Given an operator \mathcal{B} and its eigenvalues

$$
\mathcal{B} \chi_{\lambda}=\lambda \chi_{\lambda} \quad, \quad \lambda \in \mathbb{R}
$$

We can define the following quantity which defines the spectral asymmetry $(\lambda \neq 0)$

$$
\eta=\sum_{\lambda} \operatorname{sgn}(\lambda)
$$

Need to introduce a regulator

$$
\begin{aligned}
\eta_{\mathrm{APS}}(s) & =\sum_{\lambda} \frac{\lambda}{|\lambda|^{s+1}}=\sum_{\lambda} \frac{\operatorname{sgn}(\lambda)}{|\lambda|^{s}} \\
\eta_{\mathrm{PI}}(\beta) & =\sum_{\lambda} \operatorname{sgn}(\lambda) \operatorname{erfc}(|\lambda| \sqrt{\beta})
\end{aligned}
$$

η is not a topological quantity - can change under deformation.
η is not a topological quantity - can change under deformation.
it appears in

1. time-reversal-parity anomaly
2. fermion fractionzation - charge of the vacuum in presence of soliton
3. spectral flow
η is not a topological quantity - can change under deformation.
it appears in
4. time-reversal-parity anomaly
5. fermion fractionzation - charge of the vacuum in presence of soliton
6. spectral flow
η is not a topological quantity - can change under deformation.
it appears in
7. time-reversal-parity anomaly
8. fermion fractionzation - charge of the vacuum in presence of soliton
9. spectral flow

APS index theorem

$$
\operatorname{index}(\not D)=\int_{\mathcal{M}} \alpha(x)-\frac{1}{2} \eta
$$

Question

Is there a path-integral derivation of APS index theorem?

How to put field space boundary condition in path integral formalism?

Question

Is there a path-integral derivation of APS index theorem ?

How to put field space boundary condition in path integral formalism?

Revisiting the basics

- Let's start from the basic defn of Witten index

$$
W(\beta)=\operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]
$$

- For compact manifold (with/without boundary), the spectrum is discrete. One can use supersymmetry to prove $W(\beta)$ gets contribution only from zero energy states and hence

$$
W(\beta)=W(0)=W(\infty)
$$

- Index of an operator is defined as

$$
\mathcal{I} \equiv W(\infty)
$$

Revisiting the basics

- Let's start from the basic defn of Witten index

$$
W(\beta)=\operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]
$$

- For compact manifold (with/without boundary), the spectrum is discrete. One can use supersymmetry to prove $W(\beta)$ gets contribution only from zero energy states and hence

$$
W(\beta)=W(0)=W(\infty)
$$

- Index of an operator is defined as

Revisiting the basics

- Let's start from the basic defn of Witten index

$$
W(\beta)=\operatorname{Tr}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]
$$

- For compact manifold (with/without boundary), the spectrum is discrete. One can use supersymmetry to prove $W(\beta)$ gets contribution only from zero energy states and hence

$$
W(\beta)=W(0)=W(\infty)
$$

- Index of an operator is defined as

$$
\mathcal{I} \equiv W(\infty)
$$

Non-compact extension

We add the trivial cylinder. This does the following thing

- introduces continuum of scattering states
- The states of the compact manifold is simply the bound states of the non-compact manifold
- The definition of the Witten index has to be appropriately modified. One needs to use the concept of Gelfand triplet.
- Supersymmetric cancellation of states doesn't hold scattering states; Witten index depends on β.

Non-compact extension

We add the trivial cylinder. This does the following thing

- introduces continuum of scattering states
- The states of the compact manifold is simply the bound states of the non-compact manifold
- The definition of the Witten index has to be appropriately modified. One needs to use the concept of Gelfand triplet.
- Supersymmetric cancellation of states doesn't hold scattering states; Witten index depends on β.

Non-compact extension

We add the trivial cylinder. This does the following thing

- introduces continuum of scattering states
- The states of the compact manifold is simply the bound states of the non-compact manifold
- The definition of the Witten index has to be appropriately modified. One needs to use the concept of Gelfand triplet.
- Supersymmetric cancellation of states doesn't hold scattering states; Witten index depends on β.

Non-compact extension

We add the trivial cylinder. This does the following thing

- introduces continuum of scattering states
- The states of the compact manifold is simply the bound states of the non-compact manifold
- The definition of the Witten index has to be appropriately modified. One needs to use the concept of Gelfand triplet.
- Supersymmetric cancellation of states doesn't hold scattering states; Witten index depends on β.

Assumption: we assume that the continuum is separated from zero

$$
\widehat{W}(\beta)=\operatorname{Tr}_{\text {bound }}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]+\operatorname{Tr}_{\text {scattering }}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]
$$

Since we assumed that the scattering state is separated from zero,

$$
\widehat{W}(\infty)=\lim _{\beta \rightarrow \infty} \operatorname{Tr}_{\text {bound }}\left[(-1)^{\mathrm{F}} e^{-\beta H}\right]
$$

So this gives the index of compact manifold. However it is more difficult to compute. So rewrite the above equation as

$$
\begin{aligned}
\widehat{W}(\infty) & =\widehat{W}(0)+[\widehat{W}(\infty)-\widehat{W}(0)] \\
& \simeq \mathrm{AS}-\frac{1}{2} \eta
\end{aligned}
$$

Computing η invariant

We start from our guess

$$
\begin{aligned}
\eta(\beta) & :=2(\widehat{W}(\beta)-\widehat{W}(\infty)) \\
& =2 \sum_{\lambda} \int d k\left[\rho_{+}^{\lambda}(k)-\rho_{-}^{\lambda}(k)\right] e^{-\beta E(k)}
\end{aligned}
$$

Now the difference of density of state is related to deference of phase shift

$$
\rho_{+}^{\lambda}(k)-\rho_{-}^{\lambda}(k)=\frac{1}{\pi} \frac{d}{d k}\left[\delta_{+}^{\lambda}(k)-\delta_{-}^{\lambda}(k)\right] .
$$

$\delta_{ \pm}^{\lambda}(k)$ are the phase shifts.

Let the asymptotic form of the scattering wave functions is

$$
\psi_{ \pm}^{\lambda k}(u) \sim c_{ \pm}^{\lambda}\left[e^{\mathrm{i} k u}+e^{\mathrm{i} \delta_{ \pm}^{\lambda}(k)-\mathrm{i} k u}\right]
$$

where $\delta_{ \pm}^{\lambda}(k)$ are the phase shifts.
Now one can use supersymmetry to determine the difference of phase shift just from the asymptotic data

$$
2 \delta_{+}^{\lambda}(k)-2 \delta_{-}^{\lambda}(k)=-\mathbf{i} \ln \left(\frac{\mathbf{i} k+\lambda}{\mathbf{i} k-\lambda}\right)+\pi
$$

So the final result is

$$
\sum_{\lambda} \operatorname{sgn}(\lambda) \operatorname{Erfc}\left(|\lambda| \sqrt{\frac{\beta}{2}}\right)
$$

Computing AS piece

Double it to get a compact manifold without boundary

- We proved APS theorem using the scattering theory
- It would be interesting to prove APS theorem in a way similar in spirit to the proof by Alvarez-Gaume,...
\rightarrow We did notice that APS boundary condition is consistent with world-line supersymmetry (and so is anti-APS !)
- We proved APS theorem using the scattering theory
- It would be interesting to prove APS theorem in a way similar in spirit to the proof by Alvarez-Gaume,...

- We did notice that APS boundary condition is consistent with world-line supersymmetry (and so is anti-APS !)

- We proved APS theorem using the scattering theory
- It would be interesting to prove APS theorem in a way similar in spirit to the proof by Alvarez-Gaume,...
- We did notice that APS boundary condition is consistent with world-line supersymmetry (and so is anti-APS !)

Part II: Mock modular form

Modular form

Modular group $S L(2, \mathbb{Z})$:

$$
\tau \longrightarrow \frac{a \tau+b}{c \tau+d} \quad, \quad a d-b c=1 \quad a, b, c, d \in \mathbb{Z}
$$

Modular form

Modular group $S L(2, \mathbb{Z})$:

$$
\tau \longrightarrow \frac{a \tau+b}{c \tau+d} \quad, \quad a d-b c=1 \quad a, b, c, d \in \mathbb{Z}
$$

Modular form $f(\tau)$:

- Holomoprhic on the upper half plane $\operatorname{Im} \tau>0$
- Obeys the following relation

Modular form

Modular group $S L(2, \mathbb{Z})$:

$$
\tau \longrightarrow \frac{a \tau+b}{c \tau+d} \quad, \quad a d-b c=1 \quad a, b, c, d \in \mathbb{Z}
$$

Modular form $f(\tau)$:

- Holomoprhic on the upper half plane $\operatorname{Im} \tau>0$
- Obeys the following relation

$$
f\left(\frac{a \tau+b}{c \tau+d}\right)=(c \tau+d)^{k} f(\tau)
$$

Mock-modular form (Ramanujan, Zwegers, Dabholkar-Murthy-Zagier, ...)

Consider a pair h, g such that

- h is holomorphic but not modular
- $\hat{h}=h+\bar{g}$ is modular but not holomorphic
- h is called mock-modular form
- g is called the shadow

Mock-modular form (Ramanujan, Zwegers, Dabholkar-Murthy-Zagier, ...)

Consider a pair h, g such that

- h is holomorphic but not modular
- $\hat{h}=h+\bar{g}$ is modular but not holomorphic
- h is called mock-modular form
- g is called the shadow

Mock-modular form (Ramanujan, Zwegers, Dabholkar-Murthy-Zagier, ...)

Consider a pair h, g such that

- h is holomorphic but not modular
- $\hat{h}=h+\bar{g}$ is modular but not holomorphic
- h is called mock-modular form
- g is called the shadow

Mock-modular form (Ramanujan, Zwegers, Dabholkar-Murthy-Zagier, ...)

Consider a pair h, g such that

- h is holomorphic but not modular
- $\hat{h}=h+\bar{g}$ is modular but not holomorphic
- h is called mock-modular form
- g is called the shadow

Three clues

- The elliptic genus of a compact (without boundary) CFT can be written as a sum of Dirac indices.
- The elliptic genus of a non-compact CFT is (mixed-)mock modular.

- Dirac indices of non-compact manifold is regular dependent

Three clues

- The elliptic genus of a compact (without boundary) CFT can be written as a sum of Dirac indices.
- The elliptic genus of a non-compact CFT is (mixed-)mock modular.
- Dirac indices of non-compact manifold is regular dependent

Three clues

- The elliptic genus of a compact (without boundary) CFT can be written as a sum of Dirac indices.
- The elliptic genus of a non-compact CFT is (mixed-)mock modular.
- Dirac indices of non-compact manifold is regular dependent

Is there a connection ?

Let's compare two formulae

$$
\operatorname{index}(\not D)=\int_{\mathcal{M}} \alpha(x)-\frac{1}{2} \eta
$$

$$
\hat{h}(\tau, \bar{\tau})=h(\tau) \quad+\quad \bar{g}(\bar{\tau})
$$

Is there a connection ?

$$
\begin{aligned}
& \underset{h}{\operatorname{index}(D D)}=\int_{\mathcal{M}} \alpha(x)-\frac{1}{2} \eta \\
& \hat{h}(\tau, \bar{\tau})=h(\tau)+\bar{g}(\bar{\tau})
\end{aligned}
$$

partition functions - counts supersymmetric states

Is there a connection ?

$$
\begin{aligned}
\operatorname{index}(D D) & =\int_{\mathcal{M}} \alpha(x)-\frac{1}{2} \eta \\
\hat{h}(\tau, \bar{\tau}) & =h(\tau)+\bar{g}(\bar{\tau})
\end{aligned}
$$

Only these pieces are there for compact manifold without boundary; they are $\beta(\bar{\tau})$ independent

Is there a connection?

$$
\begin{aligned}
\operatorname{index}(\not D) & =\int_{\mathcal{M}} \alpha(x)-\frac{1}{2} \eta \\
\hat{h}(\tau, \bar{\tau}) & =h(\tau)+\bar{g}(\bar{\tau})
\end{aligned}
$$

Sensitive only to the boundary

Don't know in general !

However, we observe some connections in case of cigar !

Cigar

Cigar is a two dimensional non-compact manifold. The metric is given by

$$
d s^{2}=k\left(d \rho^{2}+\tanh ^{2} \rho d \psi^{2}\right)
$$

ψ is a periodic direction with period 2π. The Dirac operator near the boundary takes the form

$$
\begin{aligned}
\mathbf{i} \not D & =\gamma^{r}\left(\mathbf{i} \partial_{r}-w K_{r}\right)+\gamma^{\theta}\left(\mathbf{i} \partial_{\theta}-w K_{\theta}\right) \\
& =i \gamma^{r}\left[\partial_{r}-\frac{1}{\tanh r}\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right)\left(\mathbf{i} \partial_{\theta}-w k \tanh ^{2} r\right)\right]
\end{aligned}
$$

Lots of work on Cigar Elliptic genus by Various people Ashok, Doroud, Troost; Murthy,...

We computed from supersymmetric sigma model.

Observations

The EG of Cigar SCFT is a Mock Jacobi form of weight $1 / 2$.

$$
\begin{aligned}
& -i \frac{\vartheta_{1}(\tau, z)}{\eta^{3}(\tau)} \sum_{w} \sum_{n}\left[\frac{1}{2} \operatorname{sgn}\left(\frac{n}{k}-w\right) \operatorname{Erfc}\left(\sqrt{k \pi \tau_{2}}\left|w-\frac{n}{k}\right|\right)\right. \\
& \left.-\operatorname{sgn}(n \operatorname{im} \tau) \Theta\left[w\left(\frac{n}{k}-w\right)\right]\right] q^{-(n-w k)^{2} / 4 k} q^{(n+w k)^{2} / 4 k} y^{J_{L}}
\end{aligned}
$$

Observations

In the $\tau_{2} \rightarrow \infty$ limit we obtain

$$
\widehat{\chi}(\tau, \bar{\tau} \mid z)=0
$$

In the $\tau_{2} \rightarrow 0$ limit we obtain

$$
-i \frac{\theta_{1}\left(\tau_{1}, z\right)}{\eta\left(\tau_{1}\right)^{3}} \sum_{w, n}\left[\left(-\operatorname{sgn}(n)+\frac{1}{2} \operatorname{sgn}\left(\frac{n}{k}-w\right)\right] e^{2 \pi i \tau_{1} n w} y^{\frac{n+w k}{k}}\right.
$$

But we know the AS piece vanishes in 2 dimensions One can consider the radial limit $\left(\tau_{2} \rightarrow 0^{+}\right)$of the non-holomophic part to obtain (vector-valued) 'quantum modular forms' (in this case the weight is $1 / 2$)

Summary

Future directions

1. To Extend the proof APS index theorem using scattering for a more general type of manifolds
2. Is it possible to make the connection non-compact elliptic genus and APS index precise
3. Given a Dirac operator on a manifold with boundary, we know how to compute and boundary operator and it's eta invariant. Similarly, given a non-compact CFT, is it possible to write down systematic steps to compute the shadow?

Future directions

1. To Extend the proof APS index theorem using scattering for a more general type of manifolds
2. Is it possible to make the connection non-compact elliptic genus and APS index precise
3. Given a Dirac operator on a manifold with boundary, we know
how to compute and boundary operator and it's eta invariant.
Similarly, given a non-compact CFT, is it possible to write
down systematic steps to compute the shadow?

Future directions

1. To Extend the proof APS index theorem using scattering for a more general type of manifolds
2. Is it possible to make the connection non-compact elliptic genus and APS index precise
3. Given a Dirac operator on a manifold with boundary, we know how to compute and boundary operator and it's eta invariant. Similarly, given a non-compact CFT, is it possible to write down systematic steps to compute the shadow?

Future directions

1. To Extend the proof APS index theorem using scattering for a more general type of manifolds
2. Is it possible to make the connection non-compact elliptic genus and APS index precise
3. Given a Dirac operator on a manifold with boundary, we know how to compute and boundary operator and it's eta invariant. Similarly, given a non-compact CFT, is it possible to write down systematic steps to compute the shadow?
4. ...

Thank you

