Holographic Form for Wilson's RG

B. Sathiapalan

Matscience, Chennai

IIT Bombay 24-9-2019

イロン イボン イヨン イヨン

(1)

Conclusions

ヘロト ヘアト ヘヨト

ъ

This talk is about an attempt to understand AdS/CFT or Holography in terms of Wilsonian RG. Based on arXiv:1706.03371 (Nucl.Phys. B) and arXiv:1902.02486(Nucl. Phys. B) with Hidenori Sonoda (Kobe University).

イロト イポト イヨト イヨト

æ

- Holography is a conjectured correspondence between a d + 1-dimensional (gravity) bulk theory and a d-dimensional boundary field theory.
- Lot of evidence by now.
- Main Feature (for our purposes): The extra dimension of the bulk corresponds to the scale of the boundary field theory.

イロト 不得 とくほ とくほとう

æ

- Holography is a conjectured correspondence between a d + 1-dimensional (gravity) bulk theory and a d-dimensional boundary field theory.
- Lot of evidence by now.
- Main Feature (for our purposes): The extra dimension of the bulk corresponds to the scale of the boundary field theory.

くロト (過) (目) (日)

- Holography is a conjectured correspondence between a d + 1-dimensional (gravity) bulk theory and a d-dimensional boundary field theory.
- Lot of evidence by now.
- Main Feature (for our purposes): The extra dimension of the bulk corresponds to the scale of the boundary field theory.

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

 If the holographic conjecture is right then evolution in this extra direction SHOULD correspond to RG evolution in the field theory.

 Central Theme of this talk: Can we understand (or even better, derive) this correspondence starting from Wilsonian RG i.e. without assuming this conjecture ?

くロト (過) (目) (日)

æ

 If the holographic conjecture is right then evolution in this extra direction SHOULD correspond to RG evolution in the field theory.

 Central Theme of this talk: Can we understand (or even better, derive) this correspondence starting from Wilsonian RG i.e. without assuming this conjecture ?

ヘロト ヘアト ヘヨト ヘ

- ⊒ →

AdS/CFT Conjecture- Maldacena 1997

- Duality between boundary conformal field theory in d-dimensional flat space and bulk gravity theory in AdS_{d+1}
- AdS metric is

$$ds^2 = \frac{dz^2 + dx^i dx^i}{z^2}$$

Boundary is placed at $z = \epsilon$.

• Radial coordinate *z* defines the length scale of the boundary.

ヘロン 人間 とくほ とくほ とう

AdS/CFT Conjecture- Maldacena 1997

- Duality between boundary conformal field theory in d-dimensional flat space and bulk gravity theory in AdS_{d+1}
- AdS metric is

$$ds^2 = \frac{dz^2 + dx^i dx^i}{z^2}$$

Boundary is placed at $z = \epsilon$.

• Radial coordinate *z* defines the length scale of the boundary.

ヘロト 人間 とくほとく ほとう

AdS/CFT Conjecture- Maldacena 1997

- Duality between boundary conformal field theory in d-dimensional flat space and bulk gravity theory in AdS_{d+1}
- AdS metric is

$$ds^2 = rac{dz^2 + dx^i dx^i}{z^2}$$

Boundary is placed at $z = \epsilon$.

• Radial coordinate *z* defines the length scale of the boundary.

ヘロン 人間 とくほ とくほ とう

ъ

AdS/CFT Conjecture- Maldacena 1997

- Duality between boundary conformal field theory in d-dimensional flat space and bulk gravity theory in AdS_{d+1}
- AdS metric is

$$ds^2 = \frac{dz^2 + dx^i dx^i}{z^2}$$

Boundary is placed at $z = \epsilon$.

• Radial coordinate *z* defines the length scale of the boundary.

ヘロン 人間 とくほ とくほ とう

ъ

Mathematical Statement of Duality

۲

 Equality of generating functionals: (x - coordinates of boundary and z is radial coordinate of AdS)

$$Z[J_0]_{bulk} = \int_{J(x,\epsilon)=J_0(x)} \mathcal{D} \underbrace{J(x,z)}_{bulk \ field} e^{-S_{gravity}[J(x,z)]}$$

$$= \int \underbrace{\mathcal{D} A(x)}_{\text{boundary field}} e^{-S_{\text{field theory}}[A] + \int_{Z=\epsilon} dx \ J_0(x)O[A]} = Z[J_0]_{\text{boundary}}$$

イロト イポト イヨト イヨト

AdS Action

• The AdS action for a scalar field

 $S_{gravity}[J] =$

$$\int_{z=\epsilon}^{z=\infty} dz \int d^d x \ z^{-d+1} [(\partial_z J \partial_z J + \partial_i J \partial_i J) + \frac{1}{z^2} m^2 J^2 + \dots$$

Semiclassical Prescription: Solve the EOM with boundary conditions at *z* = *ε* and *z* = ∞ and evaluate (on-shell) action to get Green function *G*(*p*, *ε*) of the boundary theory:

$$Z[J_0] = e^{-\frac{1}{2}\int_{p} J_0(p)J_0(-p)G(p,\epsilon)}$$

ヘロト ヘアト ヘビト ヘビト

æ

AdS Action

.

• The AdS action for a scalar field

 $S_{gravity}[J] =$

$$\int_{z=\epsilon}^{z=\infty} dz \int d^d x \ z^{-d+1} [(\partial_z J \partial_z J + \partial_i J \partial_i J) + \frac{1}{z^2} m^2 J^2 + \dots$$

• Semiclassical Prescription: Solve the EOM with boundary conditions at $z = \epsilon$ and $z = \infty$ and evaluate (on-shell) action to get Green function $G(p, \epsilon)$ of the boundary theory:

$$Z[J_0] = e^{-\frac{1}{2}\int_{p} J_0(p)J_0(-p)G(p,\epsilon)}$$

ヘロン 人間 とくほ とくほ とう

э.

Holographic RG

• ϵ plays the role of RG scale

• Evolution in ϵ is by EOM of bulk theory. This is like an RG: "Holographic RG"

イロト イポト イヨト イヨト

• ϵ plays the role of RG scale

 Evolution in *ϵ* is by EOM of bulk theory. This is like an RG: "Holographic RG"

B. Sathiapalan Holographic RG

イロト イポト イヨト イヨト

Obtaining AdS Action Green Function

Wilsonian RG

- What we do from now on is logically independent of AdS/CFT : We will not use the AdS/CFT conjecture - we will use Wilsonian Exact RG.
- Two steps:
- 1. Obtain a functional integral representation of Wilson's ERG evolution operator.
- 2. Change variables ("coarse grain with anomalous dimensions") to obtain an AdS action.

イロト イポト イヨト イヨト

Obtaining AdS Action Green Function

Wilsonian RG

- What we do from now on is logically independent of AdS/CFT : We will not use the AdS/CFT conjecture - we will use Wilsonian Exact RG.
- Two steps:
- 1. Obtain a functional integral representation of Wilson's ERG evolution operator.
- 2. Change variables ("coarse grain with anomalous dimensions") to obtain an AdS action.

イロト イポト イヨト イヨト

Obtaining AdS Action Green Function

Wilsonian RG

- What we do from now on is logically independent of AdS/CFT : We will not use the AdS/CFT conjecture - we will use Wilsonian Exact RG.
- Two steps:
- 1. Obtain a functional integral representation of Wilson's ERG evolution operator.
- 2. Change variables ("coarse grain with anomalous dimensions") to obtain an AdS action.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Obtaining AdS Action Green Function

Wilsonian RG

- What we do from now on is logically independent of AdS/CFT : We will not use the AdS/CFT conjecture - we will use Wilsonian Exact RG.
- Two steps:
- 1. Obtain a functional integral representation of Wilson's ERG evolution operator.
- 2. Change variables ("coarse grain with anomalous dimensions") to obtain an AdS action.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Obtaining AdS Action Green Function

Polchinski's Equation

• Step1: Consider a zero dimensional field variable *x* (*x* is going to become a field variable in *d* dimensions eventually). Let the "Euclidean action" be:

$$S = \underbrace{\frac{1}{2}G^{-1}(t)x^{2}}_{Kinetic} + \underbrace{S_{l}(x)}_{Interaction}$$

G is a propagator and t will later be identified with ln ^A₀/_Λ.
Polchinski's Eqn

$$\frac{\partial S_I}{\partial t} = -\frac{1}{2}\dot{G}(t)\left[\frac{\partial^2 S_I}{\partial x^2} - \left(\frac{\partial S_I}{\partial x}\right)^2\right]$$

ъ

Condition for partition function to be invariant as *t* increases.

Obtaining AdS Action Green Function

Polchinski's Equation

• Step1: Consider a zero dimensional field variable *x* (*x* is going to become a field variable in *d* dimensions eventually). Let the "Euclidean action" be:

$$S = \underbrace{\frac{1}{2}G^{-1}(t)x^{2}}_{Kinetic} + \underbrace{S_{l}(x)}_{Interaction}$$

G is a propagator and *t* will later be identified with ln ^{A₀}/_A.
Polchinski's Eqn

$$\frac{\partial S_l}{\partial t} = -\frac{1}{2}\dot{G}(t)\left[\frac{\partial^2 S_l}{\partial x^2} - \left(\frac{\partial S_l}{\partial x}\right)^2\right]$$

Condition for partition function to be invariant as *t* increases.

Obtaining AdS Action Green Function

Polchinski's Equation

• Step1: Consider a zero dimensional field variable *x* (*x* is going to become a field variable in *d* dimensions eventually). Let the "Euclidean action" be:

$$S = \underbrace{\frac{1}{2}G^{-1}(t)x^{2}}_{Kinetic} + \underbrace{S_{l}(x)}_{Interaction}$$

G is a propagator and t will later be identified with ln ^A₀/_A.
Polchinski's Eqn

$$\frac{\partial S_l}{\partial t} = -\frac{1}{2}\dot{G}(t)\left[\frac{\partial^2 S_l}{\partial x^2} - \left(\frac{\partial S_l}{\partial x}\right)^2\right]$$

Condition for partition function to be invariant as *t* increases.

Obtaining AdS Action Green Function

Background: Why this equation? ANS.: There is a variant of Wilson's eqn (1974)

$$\frac{\partial \psi(x,t)}{\partial t} = -\frac{1}{2} \dot{G}(\frac{\partial}{\partial x}(\frac{\partial}{\partial x} + 2G^{-1}x)\psi(x,t))$$

イロト イポト イヨト イヨト

Dbtaining AdS Action Green Function

• If
$$\psi(\mathbf{x}) = \mathbf{e}^{-S}$$
, then

$$\psi(\mathbf{y},T) = e^{-\frac{1}{2}\mathbf{y}^2} \int dx \ e^{\frac{1}{2}\frac{(\mathbf{y}\sqrt{G(T)}-\mathbf{x})^2}{G(T)-G(0)}} e^{\frac{1}{2}G(0)^{-1}x^2} \psi(x,0)$$

- As T → 0, ψ(y, T) → ψ(y, 0) and as T → ∞, G(T) → 0, ψ(y, T) → e^{-1/2y²} ∫ dx ψ(x, 0). So at T → ∞ we have completely integrated over the variable x - coarse graining. All information about the starting wave function is lost. For finite T, partial coarse graining.
- This (variant of) Wilson's equation is for *S*, Polchinski's is for *S*₁.

イロト イポト イヨト イヨト

Dbtaining AdS Action Green Function

• If
$$\psi(\mathbf{x}) = \mathbf{e}^{-S}$$
, then

$$\psi(\mathbf{y},T) = e^{-\frac{1}{2}\mathbf{y}^2} \int dx \ e^{\frac{1}{2}\frac{(\mathbf{y}\sqrt{G(T)}-\mathbf{x})^2}{G(T)-G(0)}} e^{\frac{1}{2}G(0)^{-1}x^2} \psi(x,0)$$

- As T → 0, ψ(y, T) → ψ(y, 0) and as T → ∞, G(T) → 0, ψ(y, T) → e^{-1/2y²} ∫ dx ψ(x, 0). So at T → ∞ we have completely integrated over the variable x - coarse graining. All information about the starting wave function is lost. For finite T, partial coarse graining.
- This (variant of) Wilson's equation is for *S*, Polchinski's is for *S*₁.

ヘロト 人間 ト ヘヨト ヘヨト

Dbtaining AdS Action Green Function

• If
$$\psi(\mathbf{x}) = \mathbf{e}^{-S}$$
, then

$$\psi(\mathbf{y},T) = e^{-\frac{1}{2}\mathbf{y}^2} \int dx \ e^{\frac{1}{2}\frac{(\mathbf{y}\sqrt{G(T)}-\mathbf{x})^2}{G(T)-G(0)}} e^{\frac{1}{2}G(0)^{-1}x^2} \psi(x,0)$$

- As T → 0, ψ(y, T) → ψ(y, 0) and as T → ∞, G(T) → 0, ψ(y, T) → e^{-1/2y²} ∫ dx ψ(x, 0). So at T → ∞ we have completely integrated over the variable x - coarse graining. All information about the starting wave function is lost. For finite T, partial coarse graining.
- This (variant of) Wilson's equation is for S, Polchinski's is for S₁.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Dbtaining AdS Action Green Function

• If
$$\psi(\mathbf{x}) = \mathbf{e}^{-S}$$
, then

$$\psi(\mathbf{y},T) = e^{-\frac{1}{2}\mathbf{y}^2} \int dx \ e^{\frac{1}{2}\frac{(\mathbf{y}\sqrt{G(T)}-\mathbf{x})^2}{G(T)-G(0)}} e^{\frac{1}{2}G(0)^{-1}x^2} \psi(x,0)$$

- As T → 0, ψ(y, T) → ψ(y, 0) and as T → ∞, G(T) → 0, ψ(y, T) → e^{-1/2y²} ∫ dx ψ(x, 0). So at T → ∞ we have completely integrated over the variable x - coarse graining. All information about the starting wave function is lost. For finite T, partial coarse graining.
- This (variant of) Wilson's equation is for *S*, Polchinski's is for *S*₁.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Obtaining AdS Action Green Function

Obtaining AdS Action Green Function

Diffusion equation

• Can be written as a linear equation in terms of $\psi' = e^{-S_l}$:

$$\frac{\partial \psi'}{\partial t} = -\frac{1}{2}\dot{G}(t)\frac{\partial^2 \psi'}{\partial x^2}$$

\implies Diffusion equation.

• The evolution operator is clearly

$$e^{-\frac{1}{2}\int_0^T dt \, \dot{G}\frac{\partial^2}{\partial x^2}} = e^{-\frac{1}{2}(G(T) - G(0))\frac{\partial^2}{\partial x^2}} \equiv e^{\frac{1}{2}F(T)\frac{\partial^2}{\partial x^2}}$$

Here F(T) = G(0) - G(T).

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Obtaining AdS Action Green Function

Diffusion equation

• Can be written as a linear equation in terms of $\psi' = e^{-S_l}$:

$$\frac{\partial \psi'}{\partial t} = -\frac{1}{2}\dot{G}(t)\frac{\partial^2 \psi'}{\partial x^2}$$

 \implies Diffusion equation.

• The evolution operator is clearly

$$\boldsymbol{e}^{-\frac{1}{2}\int_0^T dt \ \dot{G}\frac{\partial^2}{\partial x^2}} = \boldsymbol{e}^{-\frac{1}{2}(G(T) - G(0))\frac{\partial^2}{\partial x^2}} \equiv \boldsymbol{e}^{\frac{1}{2}F(T)\frac{\partial^2}{\partial x^2}}$$

Here F(T) = G(0) - G(T).

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Dbtaining AdS Action Green Function

Integral Kernel Representation

• For later use, another ways of writing this:

$$\psi(\mathbf{x}_f, t_f) = \int d\mathbf{x}_i \ e^{\frac{1}{2} \frac{(\mathbf{x}_f - \mathbf{x}_i)^2}{G_f - G_i}} \psi(\mathbf{x}_i, t_i)$$

 $G(T) = G_f$ and $G(0) = G_i$.

イロト イポト イヨト イヨト

Obtaining AdS Action Green Function

Functional Integral

• Thus the path integral representation is obvious:

$$\psi'(x',T) = \int dx \int_{x(0)=x;x(T)=x'} \mathcal{D}x(t) \ e^{\frac{1}{2}\int_0^T dt \ \frac{1}{G}(\dot{x})^2} \psi'(x,0)$$

 If we replace x by x(p) and G(t) to G(p, t) we immediately generalize to higher dimensions.

イロト イポト イヨト イヨト

Dbtaining AdS Action Green Function

Functional Integral

• Thus the path integral representation is obvious:

$$\psi'(x',T) = \int dx \int_{x(0)=x;x(T)=x'} \mathcal{D}x(t) \ e^{\frac{1}{2}\int_0^T dt \ \frac{1}{G}(\dot{x})^2} \psi'(x,0)$$

 If we replace x by x(p) and G(t) to G(p, t) we immediately generalize to higher dimensions.

イロン イボン イヨン イヨン

ъ
Obtaining AdS Action Green Function

Holographic Form

• In field theories, there is a cutoff function $K(p/\Lambda)$ (for e.g. $e^{\frac{-p^2}{\Lambda^2}}$)

$$F(p,T) = G(p,0) - G(p,T) = rac{K(p/\Lambda_0) - K(p/\Lambda)}{p^2} = \Delta_h$$

Δ_h is called the "high energy" propagator.

CONCLUSION: We have a functional form for Polchinski's ERG eqn. The action is *d* + 1-dimensional, where *d* is the dimension of the field theory we started with. ⇒
 Holographic.
 END OF STEP 1

ヘロン 人間 とくほ とくほ とう

Obtaining AdS Action Green Function

Holographic Form

• In field theories, there is a cutoff function $K(p/\Lambda)$ (for e.g. $e^{\frac{-p^2}{\Lambda^2}}$)

$$F(p, T) = G(p, 0) - G(p, T) = rac{K(p/\Lambda_0) - K(p/\Lambda)}{p^2} = \Delta_h$$

Δ_h is called the "high energy" propagator.

CONCLUSION: We have a functional form for Polchinski's ERG eqn. The action is d + 1-dimensional, where d is the dimension of the field theory we started with. ⇒
 Holographic.
 END OF STEP 1

・ロト ・聞 と ・ ヨ と ・ ヨ と …

Obtaining AdS Action Green Function

Holographic Form

• In field theories, there is a cutoff function $K(p/\Lambda)$ (for e.g. $e^{\frac{-p^2}{\Lambda^2}}$)

$$F(p,T) = G(p,0) - G(p,T) = rac{K(p/\Lambda_0) - K(p/\Lambda)}{p^2} = \Delta_h$$

 Δ_h is called the "high energy" propagator.

CONCLUSION: We have a functional form for Polchinski's ERG eqn. The action is *d* + 1-dimensional, where *d* is the dimension of the field theory we started with. ⇒
 Holographic.
 END OF STEP 1

ヘロン 人間 とくほ とくほ とう

Obtaining AdS Action Green Function

Holographic Form

• In field theories, there is a cutoff function $K(p/\Lambda)$ (for e.g. $e^{\frac{-p^2}{\Lambda^2}}$)

$$F(p,T) = G(p,0) - G(p,T) = rac{K(p/\Lambda_0) - K(p/\Lambda)}{p^2} = \Delta_h$$

 Δ_h is called the "high energy" propagator.

CONCLUSION: We have a functional form for Polchinski's ERG eqn. The action is *d* + 1-dimensional, where *d* is the dimension of the field theory we started with. ⇒
 Holographic.
 END OF STEP 1

ヘロン 人間 とくほ とくほ とう

Obtaining AdS Action Green Function

Non-standard action

Step 2: the *p* dependence in the action is not the standard one - (*p*² + *m*²).

Need change of variables

B. Sathiapalan Holographic RG

イロト イポト イヨト イヨト

Obtaining AdS Action Green Function

Non-standard action

Step 2: the *p* dependence in the action is not the standard one - (*p*² + *m*²).

Need change of variables

イロト イポト イヨト イヨト

Obtaining AdS Action Green Function

• Let x = yf where $f^2 = -\dot{G}$. y is our new variable.

• Let us choose *f* to satisfy $(z = e^t)$:

$$(z\frac{d}{dz})^2 e^{-\ln f} = (z^2 p^2 + m^2) e^{-\ln f}$$

• Then the action for *y* becomes:

$$\int \frac{dz}{z} \left[z^2 (\frac{dy}{dz})^2 + y^2 (z^2 p^2 + m^2) \right]$$

イロン 不得 とくほ とくほ とうほ

Obtaining AdS Action Green Function

• Let x = yf where $f^2 = -\dot{G}$. y is our new variable.

• Let us choose f to satisfy $(z = e^t)$:

$$(z\frac{d}{dz})^2 e^{-\ln f} = (z^2 p^2 + m^2) e^{-\ln f}$$

• Then the action for *y* becomes:

$$\int \frac{dz}{z} \left[z^2 (\frac{dy}{dz})^2 + y^2 (z^2 p^2 + m^2) \right]$$

イロン 不得 とくほ とくほ とうほ

Exact RG Obtaining AdS Action Point CFT Green Function

• Let x = yf where $f^2 = -\dot{G}$. y is our new variable.

• Let us choose f to satisfy $(z = e^t)$:

$$(z\frac{d}{dz})^2 e^{-\ln f} = (z^2 p^2 + m^2) e^{-\ln f}$$

• Then the action for y becomes:

$$\int \frac{dz}{z} \, [z^2 (\frac{dy}{dz})^2 + y^2 (z^2 p^2 + m^2)]$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Obtaining AdS Action Green Function

• Let x = yf where $f^2 = -\dot{G}$. y is our new variable.

• Let us choose f to satisfy $(z = e^t)$:

$$(z\frac{d}{dz})^2 e^{-\ln f} = (z^2 p^2 + m^2) e^{-\ln f}$$

• Then the action for y becomes:

J

$$\int \frac{dz}{z} \left[z^2 (\frac{dy}{dz})^2 + y^2 (z^2 \rho^2 + m^2) \right]$$

イロト 不得 とくほと くほとう

E DQC

Obtaining AdS Action Green Function

• Equation for $\frac{1}{7}$ is the same as the equation for y

$$\left[\frac{d^2}{dz^2} + \frac{1}{z}\frac{d}{dz} - (p^2 + \frac{m^2}{z^2})\right]\frac{1}{f} = 0$$

Solutions are Bessel functions $-K_m(pz)$, $I_m(pz)$.

- $f^2 = -\dot{G} \implies$ Constraints on *G*.
- All this goes through for any dimension, d, where we get a scalar field in AdS_{d+1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Obtaining AdS Action Green Function

• Equation for $\frac{1}{7}$ is the same as the equation for y

$$\left[\frac{d^2}{dz^2} + \frac{1}{z}\frac{d}{dz} - (p^2 + \frac{m^2}{z^2})\right]\frac{1}{f} = 0$$

Solutions are Bessel functions $-K_m(pz)$, $I_m(pz)$.

- $f^2 = -\dot{G} \implies$ Constraints on *G*.
- All this goes through for any dimension, d, where we get a scalar field in AdS_{d+1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Obtaining AdS Action Green Function

• Equation for $\frac{1}{7}$ is the same as the equation for y

$$\left[\frac{d^2}{dz^2} + \frac{1}{z}\frac{d}{dz} - (p^2 + \frac{m^2}{z^2})\right]\frac{1}{f} = 0$$

Solutions are Bessel functions $-K_m(pz)$, $I_m(pz)$.

- $f^2 = -\dot{G} \implies$ Constraints on *G*.
- All this goes through for any dimension, d, where we get a scalar field in AdS_{d+1} .

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Obtaining AdS Action Green Function

Higher dimensions

• Multiply and divide by z^d :

$$S_{B} = -\int dz z^{-d+1} \int \frac{d^{d}p}{(2\pi)^{d}} \frac{1}{2} \frac{\partial x_{p}}{\partial z} \frac{\partial x_{-p}}{\partial z} \frac{1}{z^{-d} \dot{G}(p)}$$

• Let $z^{-d}\dot{G} = -f^2$ and require as before:

$$z^{d-1}(z^{-d+1}\frac{d}{dz})^2e^{-\ln f} = z^{-d+1}(p^2 + \frac{m^2}{z^2})e^{-\ln f}$$

• Performing the same manipulations as before we get:

$$S_B = \int dz \, \int_p \{ z^{-d+1} (\frac{\partial y_p}{\partial z} \frac{\partial y_{-p}}{\partial z}) + z^{-d+1} (p^2 + \frac{m^2}{z^2}) y_p y_{-p} \}$$

Scalar field in *AdS_{d+1}*! END OF STEP 2

Obtaining AdS Action Green Function

Higher dimensions

• Multiply and divide by z^d :

$$S_B = -\int dz z^{-d+1} \int \frac{d^d p}{(2\pi)^d} \frac{1}{2} \frac{\partial x_p}{\partial z} \frac{\partial x_{-p}}{\partial z} \frac{1}{z^{-d} \dot{G}(p)}$$

• Let $z^{-d}\dot{G} = -f^2$ and require as before:

$$z^{d-1}(z^{-d+1}\frac{d}{dz})^2e^{-\ln f} = z^{-d+1}(p^2 + \frac{m^2}{z^2})e^{-\ln f}$$

• Performing the same manipulations as before we get:

$$S_B = \int dz \int_p \{ z^{-d+1} (\frac{\partial y_p}{\partial z} \frac{\partial y_{-p}}{\partial z}) + z^{-d+1} (p^2 + \frac{m^2}{z^2}) y_p y_{-p} \}$$

Scalar field in *AdS_{d+1}*! END OF STEP 2

Obtaining AdS Action Green Function

Higher dimensions

• Multiply and divide by z^d :

$$S_B = -\int dz z^{-d+1} \int \frac{d^d p}{(2\pi)^d} \frac{1}{2} \frac{\partial x_p}{\partial z} \frac{\partial x_{-p}}{\partial z} \frac{1}{z^{-d} \dot{G}(p)}$$

• Let $z^{-d}\dot{G} = -f^2$ and require as before:

$$z^{d-1}(z^{-d+1}\frac{d}{dz})^2e^{-\ln f} = z^{-d+1}(p^2 + \frac{m^2}{z^2})e^{-\ln f}$$

• Performing the same manipulations as before we get:

$$S_{B} = \int dz \int_{p} \{ z^{-d+1} (\frac{\partial y_{p}}{\partial z} \frac{\partial y_{-p}}{\partial z}) + z^{-d+1} (p^{2} + \frac{m^{2}}{z^{2}}) y_{p} y_{-p} \}$$

ъ

Scalar field in AdS_{d+1}! END OF STEP 2

Obtaining AdS Action Green Function

Higher dimensions

• Multiply and divide by z^d :

$$S_B = -\int dz z^{-d+1} \int \frac{d^d p}{(2\pi)^d} \frac{1}{2} \frac{\partial x_p}{\partial z} \frac{\partial x_{-p}}{\partial z} \frac{1}{z^{-d} \dot{G}(p)}$$

• Let $z^{-d}\dot{G} = -f^2$ and require as before:

$$z^{d-1}(z^{-d+1}\frac{d}{dz})^2e^{-\ln f} = z^{-d+1}(p^2 + \frac{m^2}{z^2})e^{-\ln f}$$

• Performing the same manipulations as before we get:

$$S_{B} = \int dz \int_{p} \{ z^{-d+1} (\frac{\partial y_{p}}{\partial z} \frac{\partial y_{-p}}{\partial z}) + z^{-d+1} (p^{2} + \frac{m^{2}}{z^{2}}) y_{p} y_{-p} \}$$

Scalar field in AdS_{d+1} ! END OF STEP 2

Obtaining AdS Action Green Function

RG evolution

• What have we achieved?

$$\underbrace{e^{-S_{l}[y_{f}]}}_{IR \text{ theory}} = \int dy_{i} \underbrace{\int \mathcal{D}y(z)e^{-\int_{z_{i}}^{z_{f}} dz \ S_{B}[y(z)]}}_{d+1-\text{dimensional AdS "bulk" theory}} \underbrace{e^{-S_{l}[y_{i}]}}_{\text{"boundary" UV-theory}}$$

- S₁ is a perturbation to a *d*-dimensional CFT. The action S_B depends on the CFT. In our case the CFT is a free field theory. Can be generalized.
- Did not use the AdS/CFT conjecture or string theory just field theory RG.

くロト (過) (目) (日)

Obtaining AdS Action Green Function

RG evolution

• What have we achieved?

$$\underbrace{e^{-S_{l}[y_{f}]}}_{IR \text{ theory}} = \int dy_{i} \underbrace{\int \mathcal{D}y(z)e^{-\int_{z_{i}}^{z_{f}}dz \ S_{B}[y(z)]}}_{d+1-\text{dimensional AdS "bulk" theory}} \underbrace{e^{-S_{l}[y_{i}]}}_{\text{"boundary" UV-theory}}$$

- S_l is a perturbation to a *d*-dimensional CFT. The action S_B depends on the CFT. In our case the CFT is a free field theory. Can be generalized.
- Did not use the AdS/CFT conjecture or string theory just field theory RG.

ヘロト ヘアト ヘビト ヘビト

ъ

Obtaining AdS Action Green Function

RG evolution

• What have we achieved?

$$\underbrace{e^{-S_{l}[y_{i}]}}_{IR \ theory} = \int dy_{i} \underbrace{\int \mathcal{D}y(z)e^{-\int_{z_{i}}^{z_{f}} dz \ S_{B}[y(z)]}}_{d+1-dimensional \ AdS \ "bulk" \ theory} \underbrace{e^{-S_{l}[y_{i}]}}_{"boundary" \ UV-theory}$$

- S_I is a perturbation to a *d*-dimensional CFT. The action S_B depends on the CFT. In our case the CFT is a free field theory. Can be generalized.
- Did not use the AdS/CFT conjecture or string theory just field theory RG.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Obtaining AdS Action Green Function

Example: Green function

- We can work with x(p) gives exact result. Or with $y(p) \approx e^{-pz}x(p)$ gives low energy result.
- For eg. take $S_I[x_i] = kx_i$ and evaluate semiclassically to get

$$S_{I}[x_{f}] = \frac{1}{2}k^{2}(G(T) - G(0)) + kx_{f}$$

• Field theory language:

 $x_i = \phi = \phi_l + \phi_h$, $x_f = \phi_l$, $G(T) - G(0) = \Delta_h$, k = J. We get the expected Wilson action:

$$S_{I,\Lambda}[\phi_I] = -\frac{1}{2}J\Delta_h J + J\phi_I$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Obtaining AdS Action Green Function

Example: Green function

- We can work with x(p) gives exact result. Or with $y(p) \approx e^{-\rho z} x(p)$ gives low energy result.
- For eg. take $S_l[x_i] = kx_i$ and evaluate semiclassically to get

$$S_{l}[x_{f}] = \frac{1}{2}k^{2}(G(T) - G(0)) + kx_{f}$$

• Field theory language:

 $x_i = \phi = \phi_I + \phi_h$, $x_f = \phi_I$, $G(T) - G(0) = \Delta_h$, k = J. We get the expected Wilson action:

$$S_{I,\Lambda}[\phi_I] = -\frac{1}{2}J\Delta_h J + J\phi_I$$

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Obtaining AdS Action Green Function

Example: Green function

- We can work with x(p) gives exact result. Or with $y(p) \approx e^{-\rho z} x(p)$ gives low energy result.
- For eg. take $S_l[x_i] = kx_i$ and evaluate semiclassically to get

$$S_{l}[x_{f}] = \frac{1}{2}k^{2}(G(T) - G(0)) + kx_{f}$$

Field theory language:

 $x_i = \phi = \phi_I + \phi_h$, $x_f = \phi_I$, $G(T) - G(0) = \Delta_h$, k = J. We get the expected Wilson action:

$$S_{I,\Lambda}[\phi_I] = -\frac{1}{2}J\Delta_h J + J\phi_I$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Obtaining AdS Action Green Function

Example: Green function

- We can work with x(p) gives exact result. Or with $y(p) \approx e^{-pz}x(p)$ gives low energy result.
- For eg. take $S_l[x_i] = kx_i$ and evaluate semiclassically to get

$$S_{I}[x_{f}] = \frac{1}{2}k^{2}(G(T) - G(0)) + kx_{f}$$

Field theory language:

 $x_i = \phi = \phi_l + \phi_h$, $x_f = \phi_l$, $G(T) - G(0) = \Delta_h$, k = J. We get the expected Wilson action:

$$S_{I,\Lambda}[\phi_I] = -\frac{1}{2}J\Delta_h J + J\phi_I$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Obtaining AdS Action Green Function

So we have derived the AdS/CFT prescription - but only for for the simplest case - Gaussian theory.

The ERG (in terms of x) has a finite cutoff (but at a fixed point it is conformally invariant). The AdS version in terms of y is a low energy ($p << \Lambda$) "continuum" CFT - which is what is usually studied in the literature.

イロン イボン イヨン イヨン

æ

Obtaining AdS Action Green Function

So we have derived the AdS/CFT prescription - but only for for the simplest case - Gaussian theory. The ERG (in terms of *x*) has a finite cutoff (but at a fixed point it is conformally invariant). The AdS version in terms of *y* is a low energy ($p \ll \Lambda$) "continuum" CFT - which is what is usually studied in the literature.

ヘロト ヘアト ヘヨト ヘ

Anomalous Dimension

Generalization

Generalize to a non trivial fixed point:

$$S_{\textit{Fixed Point}} = rac{1}{2} x^2 G^{-1} + S_0(x)$$

 $S = S_{\textit{Fixed Point}} + S_1(x) = rac{1}{2} x^2 G^{-1} + S_0(x) + S_1(x)$

Both S₀ and S₀ + S₁ obey Polchinski equation. Taking the difference we get

$$\frac{\partial S_1}{\partial t} = \frac{1}{2} \dot{G} \left[\underbrace{-\frac{\partial^2 S_1}{\partial x^2} + (\frac{\partial S_1}{\partial x})^2}_{Gaussian \ part} + 2(\frac{\partial S_0}{\partial x})(\frac{\partial S_1}{\partial x}) \right].$$

イロト イポト イヨト イヨト

Anomalous Dimension

Generalization

• Generalize to a non trivial fixed point:

$$S_{Fixed\ Point} = rac{1}{2}x^2G^{-1} + S_0(x)$$

 $S = S_{Fixed\ Point} + S_1(x) = rac{1}{2}x^2G^{-1} + S_0(x) + S_1(x)$

Both S₀ and S₀ + S₁ obey Polchinski equation. Taking the difference we get

$$\frac{\partial S_1}{\partial t} = \frac{1}{2} \dot{G} \left[\underbrace{-\frac{\partial^2 S_1}{\partial x^2} + (\frac{\partial S_1}{\partial x})^2}_{Gaussian \ part} + 2(\frac{\partial S_0}{\partial x})(\frac{\partial S_1}{\partial x}) \right].$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Anomalous Dimension

Non trivial FP

• It can be shown that this gives the following "bulk" action for the evolution operator:

$$S_B[x(p,t)] = \int dt \int \frac{d^d p}{(2\pi)^d} \left[\frac{1}{\dot{G}(p)} \left(\frac{dx(p,t)}{dt}\right) \left(\frac{dx(-p,t)}{dt}\right) + \frac{\dot{G}(p)\left(\left(\frac{\delta S_0[x(p,t),t]}{\delta x(p,t)}\right) \left(\frac{\delta S_0[x(p,t),t]}{\delta x(-p,t)}\right) - \frac{\delta^2 S_0[x(p,t),t]}{\delta x(p)\delta x(-p)}\right)}{New \ term}$$

- S₀[x(p, t), t] is a known function of t (i.e. the coupling constants) and contains the information of the fixed point.
- One can change variables to *y* and obtain a non trivial *AdS* action for a scalar field.

Anomalous Dimension

Non trivial FP

• It can be shown that this gives the following "bulk" action for the evolution operator:

$$S_B[x(p,t)] = \int dt \int \frac{d^d p}{(2\pi)^d} \left[\frac{1}{\dot{G}(p)} \left(\frac{dx(p,t)}{dt}\right) \left(\frac{dx(-p,t)}{dt}\right) + \frac{\dot{G}(p)\left(\left(\frac{\delta S_0[x(p,t),t]}{\delta x(p,t)}\right) \left(\frac{\delta S_0[x(p,t),t]}{\delta x(-p,t)}\right) - \frac{\delta^2 S_0[x(p,t),t]}{\delta x(p)\delta x(-p)}\right)}{\delta x(p)\delta x(-p)}\right].$$
New term

- S₀[x(p, t), t] is a known function of t (i.e. the coupling constants) and contains the information of the fixed point.
- One can change variables to *y* and obtain a non trivial *AdS* action for a scalar field.

Anomalous Dimension

Non trivial FP

• It can be shown that this gives the following "bulk" action for the evolution operator:

$$S_B[x(p,t)] = \int dt \int \frac{d^d p}{(2\pi)^d} \left[\frac{1}{\dot{G}(p)} \left(\frac{dx(p,t)}{dt} \right) \left(\frac{dx(-p,t)}{dt} \right) + \frac{\dot{G}(p)\left(\left(\frac{\delta S_0[x(p,t),t]}{\delta x(p,t)} \right) \left(\frac{\delta S_0[x(p,t),t]}{\delta x(-p,t)} \right) - \frac{\delta^2 S_0[x(p,t),t]}{\delta x(p)\delta x(-p)} \right)}{New \ term}$$

- S₀[x(p, t), t] is a known function of t (i.e. the coupling constants) and contains the information of the fixed point.
- One can change variables to *y* and obtain a non trivial *AdS* action for a scalar field.

Anomalous Dimension

Anomalous Dimension

 One of the interesting things about the AdS description is that the two point function has information about the dimension of the operator.

$$\Delta = \frac{D}{2} \pm \underbrace{\sqrt{m^2 + \frac{D^2}{4}}}_{\nu}$$

• Our starting point (Polchinski's ERG) did not have any such parameter.

ヘロト ヘアト ヘビト ヘビト

ъ

Anomalous Dimension

Anomalous Dimension

 One of the interesting things about the AdS description is that the two point function has information about the dimension of the operator.

$$\Delta = \frac{D}{2} \pm \underbrace{\sqrt{m^2 + \frac{D^2}{4}}}_{\nu}$$

 Our starting point (Polchinski's ERG) did not have any such parameter.

ヘロト ヘアト ヘビト ヘビト

ъ

Anomalous Dimension

Anomalous Dimension

 Need to modify this equation: Wilson's original equation had such a parameter (ψ = e^{-S}):

$$\frac{\partial \psi}{\partial t} = \dot{g} \left[\frac{\partial}{\partial x(p)} \left(\frac{\partial}{\partial x(-p)} + x(p) \right) \right] \psi[x(p), t]$$
$$\dot{g} = 1 - \frac{\eta}{2} + \frac{p^2}{\Lambda^2}$$

 Wilson Actions for interacting theories are fixed point solutions of these modified equations.

ヘロト ヘアト ヘビト ヘビト

Anomalous Dimension

Anomalous Dimension

• Need to modify this equation: Wilson's original equation had such a parameter ($\psi = e^{-S}$):

$$\frac{\partial \psi}{\partial t} = \dot{g} \left[\frac{\partial}{\partial x(p)} \left(\frac{\partial}{\partial x(-p)} + x(p) \right) \right] \psi[x(p), t]$$
$$\dot{g} = 1 - \frac{\eta}{2} + \frac{p^2}{\Lambda^2}$$

 Wilson Actions for interacting theories are fixed point solutions of these modified equations.

ヘロト ヘアト ヘヨト

Anomalous Dimension

Concrete Example

 It is difficult to handle Wilson Actions for interacting theories. So consider a Gaussian theory with anomalous dimension.

$$S_{\Lambda}[\phi] = rac{1}{2} \int_{
ho} rac{p^2}{K(
ho)} rac{1}{1 + K(
ho)((rac{p}{\mu})^{\eta} - 1)} \phi(
ho) \phi(-
ho)$$

Then one can show that

$$W_{\Lambda}[J] = \frac{1}{2} \int_{\rho} J(\rho) \frac{1}{\rho^{2}(\frac{p}{\mu})^{-\eta} + \underbrace{\frac{p^{2}K}{1-K}}_{R(\rho)} J(-\rho)}$$

ヘロト 人間 ト ヘヨト ヘヨト

ъ
Anomalous Dimension

Concrete Example

 It is difficult to handle Wilson Actions for interacting theories. So consider a Gaussian theory with anomalous dimension.

$$S_{\Lambda}[\phi] = rac{1}{2} \int_{
ho} rac{p^2}{K(
ho)} rac{1}{1 + K(
ho)((rac{p}{\mu})^{\eta} - 1)} \phi(
ho) \phi(-
ho)$$

Then one can show that

$$W_{\Lambda}[J]=rac{1}{2}\int_{
ho}J(
ho)rac{1}{
ho^2(rac{
ho}{\mu})^{-\eta}+rac{
ho^2K}{1-K}J(-
ho)}$$

ヘロト 人間 ト ヘヨト ヘヨト

Anomalous Dimension

Concrete Example

• This is not singular as $p \rightarrow 0$ as long as $\Lambda > 0$.

$$egin{array}{ccc} R o const & ; & {p\over \Lambda} o 0 \ R o 0 & ; {p\over \Lambda} o \infty \end{array}$$

So

$$\lim_{\Lambda \to 0} W_{\Lambda}[J] = \frac{1}{2} \int_{\rho} J(\rho) \frac{1}{\rho^2(\frac{\rho}{\mu})^{-\eta}} J(-\rho)$$

ヘロト 人間 とくほとく ほとう

₹ 990

Anomalous Dimension

Concrete Example

• This is not singular as $p \to 0$ as long as $\Lambda > 0$.

$$R o const$$
 ; $\frac{p}{\Lambda} o 0$
 $R o 0$; $\frac{p}{\Lambda} o \infty$

۲

$$\lim_{\Lambda \to 0} W_{\Lambda}[J] = \frac{1}{2} \int_{\rho} J(\rho) \frac{1}{\rho^2 (\frac{\rho}{\mu})^{-\eta}} J(-\rho)$$

イロト 不得 とくほと くほとう

Anomalous Dimension

Concrete Example

• This is not singular as $p \to 0$ as long as $\Lambda > 0$.

$$R o const$$
 ; $\frac{p}{\Lambda} o 0$
 $R o 0$; $\frac{p}{\Lambda} o \infty$

۲

$$\lim_{\Lambda\to 0} W_{\Lambda}[J] = \frac{1}{2} \int_{\rho} J(\rho) \frac{1}{\rho^2 (\frac{\rho}{\mu})^{-\eta}} J(-\rho)$$

イロト 不得 とくほ とくほ とう

₹ 990

Anomalous Dimension

Concrete Example

But for small *p*

$$\mathcal{S}_{\Lambda}[\phi] = rac{1}{2} \int_{oldsymbol{\rho}} rac{oldsymbol{\rho}^2}{(rac{oldsymbol{\rho}}{\mu})^\eta} \phi(oldsymbol{
ho}) \phi(-oldsymbol{
ho})$$

This is unusual. Wilson action is normally analytic at p = 0 because of the IR cutoff.

Could happen with composite fields. Because composite fields start of with unusual dimensions.

ヘロト ヘアト ヘビト ヘビト

ъ

Anomalous Dimension

Concrete Example

But for small *p*

$$\mathcal{S}_{\Lambda}[\phi] = rac{1}{2} \int_{oldsymbol{\rho}} rac{oldsymbol{\rho}^2}{(rac{oldsymbol{\rho}}{\mu})^\eta} \phi(oldsymbol{
ho}) \phi(-oldsymbol{
ho})$$

This is unusual. Wilson action is normally analytic at p = 0 because of the IR cutoff.

Could happen with composite fields. Because composite fields start of with unusual dimensions.

ヘロト ヘアト ヘビト ヘビト

æ

Anomalous Dimension

Concrete Example

and

• f(z, p) is given by

$$\frac{1}{f(z,p)} \approx const \ p(\frac{p}{\mu})^{-\frac{\eta}{2}} I_{-\nu}(pz)$$
$$G \approx \frac{1}{p^2(\frac{p}{\mu})^{-\eta} \frac{I_{-\nu}(pz)}{I_{\nu}(pz)}}$$

with $\nu = 1 - \frac{\eta}{2}$.

Anomalous Dimension

Anomalous Dimension

• Using
$$I_{
u}(pz) pprox (pz)^{-
u}$$
 as $pz
ightarrow 0$

$$\lim_{pz\to 0} G = constant$$

No singularity at p = 0, as it should be because it is the high energy propagator.

• For large
$$pz$$
, $I_{\nu}(pz)
ightarrow e^{pz}$ so

$$\lim_{pz\to\infty}G=\frac{1}{p^2(\frac{p}{\mu})^{-\eta}}$$

as required.

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

Anomalous Dimension

Anomalous Dimension

 How did the field transformation introduce anomalous dimension? The general integrating kernel of such differential equations are of the form:

$$\psi[x_{f}(p), t_{f}] = \int dx_{i} \ e^{-\frac{1}{2}A^{2}(p,t)[x_{f}(p)-Z(p,t_{f},t_{i})x_{i}(p)]^{2}}\psi[x_{i}(p), t_{i}]$$

with $Z \approx e^{-p^2 + \frac{\eta}{2}}$.

• We started with:

$$\psi'(x_f, t_f) = \int dx_i \ e^{\frac{1}{2} \frac{(x_f - x_i)^2}{G_f - G_i}} \psi'(x_i, t_i)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

which has Z = 1 so no anomalous dimension.

Anomalous Dimension

Anomalous Dimension

• How did the field transformation introduce anomalous dimension? The general integrating kernel of such differential equations are of the form:

$$\psi[x_{f}(p), t_{f}] = \int dx_{i} \ e^{-\frac{1}{2}A^{2}(p,t)[x_{f}(p)-Z(p,t_{f},t_{i})x_{i}(p)]^{2}}\psi[x_{i}(p), t_{i}]$$

with $Z \approx e^{-p^2 + \frac{\eta}{2}}$.

• We started with:

$$\psi'(x_f, t_f) = \int dx_i \ e^{\frac{1}{2} \frac{(x_f - x_i)^2}{G_f - G_j}} \psi'(x_i, t_i)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

which has Z = 1 so no anomalous dimension.

Anomalous Dimension

Anomalous Dimension

 How did the field transformation introduce anomalous dimension? The general integrating kernel of such differential equations are of the form:

$$\psi[x_{f}(\boldsymbol{p}), t_{f}] = \int dx_{i} \ e^{-\frac{1}{2}A^{2}(\boldsymbol{p}, t)[x_{f}(\boldsymbol{p}) - \boldsymbol{Z}(\boldsymbol{p}, t_{f}, t_{i})x_{i}(\boldsymbol{p})]^{2}} \psi[x_{i}(\boldsymbol{p}), t_{i}]$$

with $Z \approx e^{-p^2 + \frac{\eta}{2}}$.

• We started with:

$$\psi'(x_f, t_f) = \int dx_i \ e^{\frac{1}{2} \frac{(x_f - x_i)^2}{G_f - G_i}} \psi'(x_i, t_i)$$

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

which has Z = 1 so no anomalous dimension.

Anomalous Dimension

Anomalous Dimension

- But we made a change of variables: $x = f_{\nu}y$.
- f_{ν} has the behaviour $e^{(1-\nu)t}$:

 $\psi[y_f(p), t_f] \approx \int dy_i \ e^{-\frac{1}{2}A^2(p,t)[f_{\nu}(p,t_f)y_f(p)-f_{\nu}(p,t_i)y_i(p)]^2} \psi[y_i(p), t_i]$

So $Z(t_f, t_i) \approx \frac{f_{\nu}(\rho, t_i)}{f_{\nu}(\rho, t_f)} \approx e^{\frac{\eta}{2}(t_f - t_i)}$ and $\nu = 1 - \frac{\eta}{2}$ as expected.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Anomalous Dimension

Anomalous Dimension

- But we made a change of variables: $x = f_{\nu}y$.
- f_{ν} has the behaviour $e^{(1-\nu)t}$:

$$\psi[y_f(p), t_f] \approx \int dy_i \ e^{-\frac{1}{2}A^2(p,t)[f_{\nu}(p,t_f)y_f(p)-f_{\nu}(p,t_i)y_i(p)]^2} \psi[y_i(p), t_i]$$

So
$$Z(t_f, t_i) \approx \frac{f_{\nu}(\rho, t_i)}{f_{\nu}(\rho, t_f)} \approx e^{\frac{\eta}{2}(t_f - t_i)}$$
 and $\nu = 1 - \frac{\eta}{2}$ as expected.

▲□▶▲□▶▲□▶▲□▶ □ のQ()

Anomalous Dimension

Anomalous Dimension

• So we understand how anomalous dimension gets incorporated. This is relevant for elementary fields in non trivial fixed point theories. As well as composite operators.

ヘロト 人間 ト ヘヨト ヘヨト

æ

Summary

• We have a holographic form of Wilson's exact RG.

- A change of variables maps this to an action in AdS space
 makes contact with "AdS/CFT" without invoking the Maldacena conjecture or string theory.
- This ERG prescription becomes significant when you calculate quantities that are not already determined by conformal symmetry.
- Explicit calculations have been done only for the free theory - Gaussian fixed point - but with anomalous dimensions.

イロト イポト イヨト イヨト

Summary

- We have a holographic form of Wilson's exact RG.
- A change of variables maps this to an action in AdS space
 makes contact with "AdS/CFT" without invoking the Maldacena conjecture or string theory.
- This ERG prescription becomes significant when you calculate quantities that are not already determined by conformal symmetry.
- Explicit calculations have been done only for the free theory - Gaussian fixed point - but with anomalous dimensions.

ヘロト 人間 ト ヘヨト ヘヨト

Summary

- We have a holographic form of Wilson's exact RG.
- A change of variables maps this to an action in AdS space
 makes contact with "AdS/CFT" without invoking the Maldacena conjecture or string theory.
- This ERG prescription becomes significant when you calculate quantities that are not already determined by conformal symmetry.
- Explicit calculations have been done only for the free theory - Gaussian fixed point - but with anomalous dimensions.

ヘロト ヘアト ヘビト ヘビト

ъ

Summary

- We have a holographic form of Wilson's exact RG.
- A change of variables maps this to an action in AdS space
 makes contact with "AdS/CFT" without invoking the Maldacena conjecture or string theory.
- This ERG prescription becomes significant when you calculate quantities that are not already determined by conformal symmetry.
- Explicit calculations have been done only for the free theory - Gaussian fixed point - but with anomalous dimensions.

ヘロト ヘアト ヘビト ヘビト

- In principle it can be done for non trivial fixed point. This has not been done yet (but anomalous dimensions have been understood).
- Need to study composite operators.
- Interactions need to be understood.

And most importantly - the significance of dynamical gravity (and especially black holes) in the bulk needs to be studied.

ヘロト ヘアト ヘヨト ヘ

- In principle it can be done for non trivial fixed point. This has not been done yet (but anomalous dimensions have been understood).
- Need to study composite operators.
- Interactions need to be understood.

And most importantly - the significance of dynamical gravity (and especially black holes) in the bulk needs to be studied.

- In principle it can be done for non trivial fixed point. This has not been done yet (but anomalous dimensions have been understood).
- Need to study composite operators.
- Interactions need to be understood.

And most importantly - the significance of dynamical gravity (and especially black holes) in the bulk needs to be studied.

ヘロト ヘアト ヘヨト ヘ

- In principle it can be done for non trivial fixed point. This has not been done yet (but anomalous dimensions have been understood).
- Need to study composite operators.
- Interactions need to be understood.

And most importantly - the significance of dynamical gravity (and especially black holes) in the bulk needs to be studied.

< ロ > < 同 > < 三 > .

THANK YOU!

B. Sathiapalan Holographic RG