The Hubble Tension: A Particle Physics Perspective

Miguel Escudero Abenza

miguel.escudero@tum.de

short review + original work based on:

<u>ArXiv:1909.04044</u>, EPJC 80 (2020) 4, 294 <u>ArXiv:2004.01470</u>, NuPhys19 Proceedings <u>ArXiv:2103.03249</u>, EPJC 81 (2021) 6, 515

with Sam Witte

Indian Institute of Technology Mumbai 10-06-2022 Unterstützt von / Supported by

Alexander von Humboldt Stiftung/Foundation

Riess *et al.* 2112.04510

Local Measurements

 $H_0 = 73.04 \pm 1.04 \,\mathrm{km/s/Mpc}$

Planck 2018 1807.06209

 $H_0 = 67.4 \pm 0.5 \,\mathrm{km/s/Mpc}$

5σ tension within ΛCDM!

ACDM Prediction

Outline

1) The Hubble Tension

Observational Evidence Brief review of Models

2) The Majoron as a solution to the H₀ tension

The singlet Majoron model Majoron Cosmology

3) Conclusions and Outlook

The Hubble Law

The Universe is expanding!

Hubble (1929): $v = H_0 d$

The Hubble Tension in Perspective

Miguel Escudero (TUM)

The Hubble Tension in Perspective

The Hubble Tension

The Hubble Tension:

 $H_0 = 73.04 \pm 1.04 \text{ km/s/Mpc}$ $H_0 = 67.4 \pm 0.5 \text{ km/s/Mpc}$

Riess *et al.* 2112.04510

Planck 2018 1807.06209

5σ tension within ΛCDM!

Miguel Escudero (TUM)

The Hubble Tension

- Possible resolutions:
 - 1) Systematics in the CMB data

very unlikely

- 2) Systematics in local measurements none so far
- 3) New feature of ACDM

- Possibilities beyond ΛCDM: See 2103.01183 by di Valentino et al. for a review (over 1000 references ...)
 - 1) Late Universe Modifications
 - 2) Early Universe Modifications

very unlikely

hard but doable

Why late Universe modifications do not work? see e.g. 2103.08723 by Efstathiou

Because type Ia SN and Baryon Acoustic Oscillations constrain the expansion history of the Universe at z < 2.5 and they agree with the predictions of Λ CDM

Miguel Escudero (TUM)

Why Early Universe modifications could work? Because the CMB does not measure H_0 directly!

Planck measures the positions of the peaks: $\theta_s \equiv r_s/D_M(z_\star)$

(0.03% precision)

The game is to make r_s smaller by ~8% so that H_0 Model Building task: can be the one reported by Riess. But, not spoiling the fit to ultra precise CMB data from Planck!

simplest:

Knox and Millea 1908.03663

Enhance the expansion history of the **Universe prior and close to recombination!**

Miguel Escudero (TUM)

The Hubble Tension

Dark Radiation as a solution?

By far the simplest possibility, we have $\mathcal{O}(10^3)$ models that can do it:

$$\Delta N_{\rm eff} = N_{\rm eff} - N_{\rm eff}^{\rm SM} > 0 \qquad N_{\rm eff}^{\rm SM} \simeq 3.04$$

Editors' Suggestion

Goldstone Bosons as Fractional Cosmic Neutrinos

Steven Weinberg Phys. Rev. Lett. **110**, 241301 – Published 10 June 2013

Typically interpreted as additional massless dark radiation as a relic from the Big Bang

Miguel Escudero (TUM)

L

Neff as a solution to the H₀ Tension?

How large would $\Delta N_{ m eff}$ need to be to solve the tension?

$$H_0 \simeq [67.4 + 6.2 \Delta N_{\text{eff}}] \text{ km/s/Mpc}$$

Vagnozzi 1907.07569

 $= \Delta N_{\rm eff} \simeq 1$ would yield the value of H_0 reported by Riess

Problem 1) BBN constraints indicate that: $\Delta N_{
m eff}^{
m BBN} < 0.5$ Pisanti et al. 2011.11537

Constraints are dominated by Helium measurements (that could suffer from systematics)

• In many models $\Delta N_{\rm eff}^{\rm CMB} \neq \Delta N_{\rm eff}^{\rm BBN}$

Problem 2) Within the framework of Λ CDM Planck is compatible with $N_{\rm eff} \simeq 3$

$$N_{\rm eff}^{\rm CMB+BAO} = 2.99 \pm 0.17$$
 Planck 2018

Maybe there is an effect that can compensate a large Neff at the level of the CMB fit?

Neutrinos interactions can lead to a relevant impact on the CMB spectra Bashinsky and Seljak astro-ph/0310198

$$\delta G_{\mu\nu} = 8\pi G \, \delta T_{\mu\nu}$$

Neutrinos and the Hubble Tension

Strong Neutrino Scattering + Extra Radiation Kreisch, Cyr-Racine, Doré 1902.00543

H₀ tension solved if TEEE data is ignored If pol data is included no solution for H₀ Almost excluded by Lab data (Blinov++1905.02727)

Light Neutrinophilic Scalar + Dark Radiation Escudero & Witte 1909.04044

H₀ tension from 4.4σ to 2.5σ CMB fit is not degraded Direct connection with Seesaw Ad hoc $\Delta N_{\rm eff} \sim 0.5$

Primordial population of light scalars Escudero & Witte 2103.03249

Sterile neutrinos can source $\Delta N_{eff} \sim 0.4$ Sterile neutrinos can lead to Leptogenesis H₀ tension from 5 σ to 2.5 σ

Miguel Escudero (TUM)

••

...

•••

Hundreds of Models in the market See 2103.01183 by di Valentino et al.

Most of them do not work well. They either lead to a bad CMB fit or do not shift H₀ enough Schöneberg et al. 2107.10291: *The H₀ Olympics: A fair ranking of proposed models*

- Hundreds of Models in the market See 2103.01183 by di Valentino et al.

Most of them do not work well. They either lead to a bad CMB fit or do not shift H₀ enough Schöneberg et al. 2107.10291: *The H₀ Olympics: A fair ranking of proposed models*

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	ΔAIC		Finalist
ΛCDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.9σ	X	-4.60	-2.60	X	X
SIDR	1	-19.385 ± 0.024	3.2σ	3.6σ	X	-3.77	-1.77	X	X
DR-DM	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-7.82	-3.82	X	X
mixed DR	2	-19.388 ± 0.026	3.2σ	3.7σ	X	-6.40	-2.40	X	X
$SI\nu + DR$	3	-19.440 ± 0.038	370	3.9σ	X	-3.56	2.44	X	X
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74	\checkmark	√ ②
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	\checkmark	√ (3)
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87	\checkmark	√ ③
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	1	-16.11	-12.11	\checkmark	🗸 🌖
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80	\checkmark	√ ②
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	\checkmark	-17.70	-11.70	\checkmark	✓ ②
CPL	2	-19.400 ± 0.016	3.9σ	4.1σ	X	-4.23	-0.23	X	X
PEDE	0	-19.349 ± 0.013	2.7σ	2.0σ	\checkmark	4.76	4.76	X	X
MPEDE	1	-19.400 ± 0.022	3.6σ	4.0σ	X	-2.21	-0.21	X	X
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.410 ± 0.013	4.2σ	4.4σ	X	-4.18	-0.18	X	X
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.2σ	X	0.11	4.11	X	X

None of them fully solves the Hubble tension!

Most of those that can ameliorate the tension are not theoretically well motivated

Miguel Escudero (TUM)

best performance:

A critical review of the best performing models

Schöneberg et al. 2107.10291: The H₀ Olympics: A fair ranking of proposed models

Model	$\Delta N_{ m param}$	M_B	Gaussian Tension	$Q_{\rm DMAP}$ Tension		$\Delta \chi^2$	ΔAIC		Finalist
Majoron	3	-19.380 ± 0.027	3.0σ	2.9σ	\checkmark	-13.74	-7.74 ,	(√ ②
primordial B	1	-19.390 ± 0.018	3.5σ	3.5σ	X	-10.83	-8.83	(√ ③
varying m_e	1	-19.391 ± 0.034	2.9σ	3.2σ	X	-9.87	-7.87 .	(√ ③
varying $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.7σ	\checkmark	-16.11	-12.11	(✓
EDE	3	-19.390 ± 0.016	3.6σ	1.6σ	\checkmark	-20.80	-14.80 ,	(✓ ②
NEDE	3	-19.380 ± 0.021	3.2σ	2.0σ	\checkmark	-17.70	-11.70	(✓ ②

Primordial magnetic fields & $m_{\rho}(t) + \Omega_k$

The idea here is that recombination happens earlier than in ΛCDM by either

- a) using primordial magnetic fields of ~ 1 nGauss on kpc scales [Jedamzik & Pogosian 2004.09487]
- b) enhancing $m_e(t)$ at recombination by ~ 2% [Hart & Chluba 1912.03986]

Good exercises, not much theoretical motivation for $m_e(t)$ but maybe yes for B fields.

Early Dark Energy Poulin, Smith, Karwal, Kamionkowski 1811.04083 Agrawal, Cyr-Racine, Pinner, Randall 1904.01016 The idea is that there is an early dark energy component just acting right before recombination This can be done with a very light scalar field with $m_{\phi} \sim 10^{-27} \,\mathrm{eV}$ that yields $f_{\mathrm{EDE}} \sim 10 \,\%$ but with a very particular potential: $V_{\phi} \sim m^2 f^2 \left[1 - \cos \phi / f\right]^3 \sim m^2 \phi^6 / f^4$

Highly unclear where such potential could come from and there is a coincidence problem ...

New Early Dark Energy

Another possibility is to trigger a 1st order phase transition at $T \sim eV$ [Niedermann & Sloth 1910.10739] see [Niedermann & Sloth It appears rather involved ... Dark gauge sector, DM, neutrinos, inverse seesaw...

Miguel Escudero (TUM)

2112.00759, 2112.00770]

The Hubble Tension

1) Observational evidence

There is strong observational evidence from Cepheids+SNIa

However, it is still just a tension. It needs to be confirmed by other methods

We expect significant improvements in ~3-4 years, particularly with upcoming data from Gaia & the James Webb telescope

2) Theoretical modeling

Despite the strong efforts, we have no perfect model so far

Most of the models lack theoretical motivation

My personal view as a particle physicist:

Exciting opportunity to try to learn about fundamental physics

Mid Seminar Pause =)

Questions?

Comments?

Criticism?

All are most welcome!

Miguel Escudero (TUM)

The Hubble Tension

The Idea

What is the Majoron?

What are its properties and its cosmology?

Why can it address the Hubble tension?

Miguel Escudero (TUM)

The Hubble Tension

The Seesaw Mechanism

Minkowski, Yanagida, Gell-Mann, Ramond, Slansky, Glashow, Mohapatra, Senjanovic, Schechter, Valle

Neutrinos are very light Majorana particles:

$$m_{\nu} \simeq 0.03 \,\mathrm{eV} \,\left(\frac{y_D}{10^{-6}}\right)^2 \,\frac{\mathrm{TeV}}{M_N}$$

Miguel Escudero (TUM)

The Scenario

Spontaneously Broken Symmetry Global U(1)

Chikashige, Mohapatra, Peccei (1981)

Sterile Neutrinos
$$\mathcal{L} = -\frac{\lambda_{N_{ij}}}{\sqrt{2}} \Phi \overline{N}_{R,i} N_{R,j}^c - h_{\alpha i} \overline{L}_L^{\alpha} H N_{Ri} + \text{h.c.}, \quad \begin{array}{l} L[\Phi] = 2\\ L[N] = 1 \end{array}$$

SSB:
$$\Phi \to v_L / \sqrt{2} \longrightarrow M_N = \lambda_N v_L \longrightarrow m_\nu \simeq h^2 v_H^2 / (2M_N)$$

$$\begin{aligned} \text{Scalar Sector} \quad V_{\Phi} &= -\mu_{\Phi}^2 \Phi^{\dagger} \Phi + \lambda_{\Phi} (\Phi^{\dagger} \Phi)^2 - \lambda_{\Phi H} (H^{\dagger} H) (\Phi^{\dagger} \Phi) \\ \Phi &= \frac{v_L + \rho}{\sqrt{2}} e^{i\phi/v_L} \quad \rho \equiv \text{CP-even scalar} \quad m_{\rho}^2 = 2\lambda_{\Phi} v_L^2 \\ \phi \equiv \text{Majoron} \quad \text{pseudo-Goldstone:} \quad m_{\phi} \simeq 0 \end{aligned}$$

$$\begin{aligned} \text{Interactions} \quad \mathcal{L}_{\text{eff}} &= -\frac{\lambda_N}{2} \left[\rho \bar{N} N - i\phi \bar{N} \gamma_5 N \right] \\ &\quad -\frac{\lambda_{N\nu}}{2} \left[\rho \bar{N} \nu - i\phi \bar{N} \gamma_5 \nu \right] + \text{h.c.} \quad \lambda_{\nu} \ll \lambda_{N\nu} \ll \lambda_N \\ &\quad -\frac{\lambda_{\nu}}{2} \left[\rho \bar{\nu} \nu - i\phi \bar{\nu} \gamma_5 \nu \right] + \text{h.c.} \quad \lambda_{\nu} \simeq \left| \theta \right|^2 \lambda_N \\ &\quad \left| \theta \right|^2 \simeq 5 \times 10^{-11} \frac{m_{\nu}}{0.05 \, \text{eV}} \frac{1 \, \text{GeV}}{M_N} \end{aligned}$$

Miguel Escudero (TUM)

The Scenario

Spontaneously Broken Symmetry Global U(1)

Chikashige, Mohapatra, Peccei (1981)

The Majoron:
$$\phi$$
 $\mathcal{L}_{\mathrm{int}} = i\lambda\,\phi\,\bar{\nu}\,\gamma_5\,\nu$

Very weakly interacting:

$$\lambda \simeq 10^{-13} \frac{m_{\nu}}{0.05 \,\mathrm{eV}} \frac{\mathrm{TeV}}{v_L}$$
 (seesaw)

Extremely feebly interacting with matter: $\lambda_{\phi ee} \sim 10^{-20}$

Dimension-5 Planck suppressed operators:

$$m_{\phi} \sim v_L \sqrt{\frac{v_L}{M_{\rm Pl}}} \lesssim 0.1 \,\mathrm{keV}$$

Key coincidence!!

$$\Delta V = \beta \left(\Phi^* \Phi \right)^2 \frac{\Phi^* + \Phi}{M_{\rm Pl}}$$

Rothstein, Babu, Seckel hep-ph/9301213 Akhmedov, Berezhiani, Mohapatra, Senjanovic hep-ph/9209285

 $\begin{array}{l} \textbf{Reference ter space} & 10^{-15} \leq \lambda \\ \textbf{Reference ter space} & \phi \leq \nu \\ 0.1 \, \mathrm{eV} < m_{\phi} < \mathbf{MeV} \\ m_{\phi} \sim \mathrm{eV}, \\ \nu_{L} \sim \mathrm{I}^{\phi} \overline{\mathrm{TeV}} \end{array} \end{array}$

Miguel Escudero (TUM)

Cosmological Implications

Two main effects:

Chacko, Hall, Okui, Oliver hep-ph/0312267

Non-standard expansion history

Erase the neutrino anisotropic stress

Cosmological Analysis

Non-standard expansion history Erase the neutrino anisotropic stress

Perturbations

Background

We solve the Boltzmann equation of the neutrino-majoron system

Escudero 1812.05605 & 2001.04466

$\frac{dT_{\phi}}{dt} =$	$\frac{1}{\frac{\partial n_{\phi}}{\partial \mu_{\phi}}\frac{\partial \rho_{\phi}}{\partial T_{\phi}} - \frac{\partial n_{\phi}}{\partial T_{\phi}}\frac{\partial \rho_{\phi}}{\partial \mu_{\phi}}}$	$\left[-3H\left(\right.\right.$	$\left(p_{\phi}+\rho_{\phi}\right)$	$_{\phi})rac{\partial n_{\phi}}{\partial \mu_{\phi}} -$	$n_{\phi} \frac{\partial \rho_{\phi}}{\partial \mu_{\phi}} \bigg) +$	$-{\partial n_\phi\over\partial\mu_\phi}{\delta ho_\phi\over\delta t}-$	$\frac{\partial \rho_{\phi}}{\partial \mu_{\phi}} \frac{\delta n_{\phi}}{\delta t} \bigg]$
$\frac{d\mu_{\phi}}{dt} =$	$\frac{-1}{\frac{\partial n_{\phi}}{\partial \mu_{\phi}}\frac{\partial \rho_{\phi}}{\partial T_{\phi}}-\frac{\partial n_{\phi}}{\partial T_{\phi}}\frac{\partial \rho_{\phi}}{\partial \mu_{\phi}}}$	$\left[-3H\left(\right.\right.$	$(p_{\phi} + \rho_{\phi})$	$_{\phi})rac{\partial n_{\phi}}{\partial T_{\phi}} -$	$n_{\phi} \frac{\partial \rho_{\phi}}{\partial T_{\phi}} \bigg) +$	$-{\partial n_\phi\over\partial T_\phi}{\delta ho_\phi\over\delta t}-$	$\frac{\partial \rho_{\phi}}{\partial T_{\phi}} \frac{\delta n_{\phi}}{\delta t} \bigg]$
$\frac{dT_{\nu}}{dt} =$	$\frac{1}{\frac{\partial n_{\nu}}{\partial \mu_{\nu}}\frac{\partial \rho_{\nu}}{\partial T_{\nu}}-\frac{\partial n_{\nu}}{\partial T_{\nu}}\frac{\partial \rho_{\nu}}{\partial \mu_{\nu}}}$	$\left[-3H\left(\right.\right.$	$(p_{\nu}+\rho_{\nu})$	$(\partial \frac{\partial n_{\nu}}{\partial \mu_{\nu}} -$	$n_{\nu} \frac{\partial \rho_{\nu}}{\partial \mu_{\nu}} \bigg) -$	$\frac{\partial n_{\nu}}{\partial \mu_{\nu}} \frac{\delta \rho_{\phi}}{\delta t} + 2$	$2 \frac{\partial \rho_{\nu}}{\partial \mu_{\nu}} \frac{\delta n_{\phi}}{\delta t} \bigg]$
$\frac{d\mu_{\nu}}{dt} =$	$\frac{-1}{\frac{\partial n_{\nu}}{\partial \mu_{\nu}}\frac{\partial \rho_{\nu}}{\partial T_{\nu}}-\frac{\partial n_{\nu}}{\partial T_{\nu}}\frac{\partial \rho_{\nu}}{\partial \mu_{\nu}}}$	$\left[-3H\left(\right.\right.$	$(p_{\nu}+\rho_{\nu})$	$\left(\frac{\partial n_{\nu}}{\partial T_{\nu}}-\right)$	$n_{\nu} \frac{\partial \rho_{\nu}}{\partial T_{\nu}} \bigg) -$	$\frac{\partial n_{\nu}}{\partial T_{\nu}} \frac{\delta \rho_{\phi}}{\delta t} + 2$	$2 \frac{\partial \rho_{\nu}}{\partial T_{\nu}} \frac{\delta n_{\phi}}{\delta t} \bigg]$
$\frac{dT_{\gamma}}{dt} =$	$-HT_{\gamma}$,						

We use the relaxation time approximation to model the effects of interactions in the perturbations:

$$\begin{split} \dot{\delta}_{\nu\phi} &= -\frac{4}{3}\theta_{\nu\phi} - \frac{2}{3}\dot{h} \,, \\ \dot{\theta}_{\nu\phi} &= k^2 \left(\frac{1}{4}\delta_{\nu\phi} - \sigma_{\nu\phi}\right) \,, \\ \dot{F}_{\nu\phi2} &= 2\dot{\sigma}_{\nu\phi} = \frac{8}{15}\theta_{\nu\phi} - \frac{3}{5}kF_{\nu\phi3} + \frac{4}{15}\dot{h} + \frac{8}{5}\dot{\eta} - 2a\Gamma\sigma_{\nu\phi} \,, \\ \dot{F}_{\nu\phi\ell} &= \frac{k}{2\ell+1} \left[\ell F_{\nu\phi(\ell-1)} - (\ell+1)F_{\nu\phi(\ell+1)}\right] - a\Gamma F_{\nu\phi\ell} \,, \ \ell \geq 3 \,. \end{split}$$

$$\Gamma \equiv \frac{1}{n_{\nu}} \left. \frac{\delta n_{\nu}}{\delta t} \right|_{\text{forward}} = \frac{\Gamma_{\phi}}{2} \left. \frac{m_{\phi}^2}{T_{\nu}^2} e^{\frac{\mu_{\nu}}{T_{\nu}}} K_1 \left(\frac{m_{\phi}}{T_{\nu}} \right) \right|_{\text{forward}}$$

• We include in CLASS all of these effects

Miguel Escudero (TUM)

Cosmological Implications

Neutrino Perturbations

Neutrino perturbations are key:

Free Streaming Neutrinos $\sigma_{\nu} \neq 0$

Effect on the CMB is to shift the positions of the peaks! Bashinsky and Seljak astro-ph/0310198

Miguel Escudero (TUM)

The Hubble Tension

Mumbai 10-06-22

Effects on the CMB

Miguel Escudero (TUM)

Effects on the CMB

Full MCMC to Planck 2018 data

 1σ preference when including H₀ in the fit and an additional ΔN_{eff}

Miguel Escudero (TUM)

The Hubble Tension

Parameter Space for H₀

Requires a positive $\Delta N_{eff} \sim 0.5$

 H_0 • Thanks to the $\nu - \phi$ interactions Planck 2018 fit is not degraded wrt ΛCDM

Very close to the electroweak scale $v_L \sim (0.1-1)\,{
m TeV}$

Miguel Escudero (TUM)

The Hubble Tension

Summary of Escudero & Witte 19'

- The Majoron and the Hubble tension
 - Planck sets very stringent constraints
 - The CMB-S4 experiment can test large regions of parameter space since $\sigma(N_{\rm eff}) \simeq 0.03$
 - Can reduce the tension if: $v_L \sim (0.1 1) \text{ eV}$ $\Delta N_{\text{eff}} \sim 0.5$

$$\Theta \Delta N_{\rm eff} \sim 0.5$$
 is somewhat ad hoc

Wow we have a very good reason for it!

Primordial Majorons

There are sterile neutrinos in the model

since $v_L \lesssim 1 \text{ TeV}$ then we can expect $M_N \sim 1 \text{ GeV}$

- The decays of GeV-scale sterile neutrinos in the early Universe can lead to $\Delta N_{\rm eff}^{\rm BBN} \sim 0.3$ since $T_d \sim M_N/10$
- Neutrino-Majoron interactions can rise it to $\Delta N_{\rm eff}^{\rm CMB} \sim 0.6$

These sterile neutrinos can do ARS Leptogenesis!

Production of Majoron population

Sterile neutrinos have masses ~ GeV and interact with the majoron

Sterile neutrinos that give mass to the active ones thermalize (Ghiglieri & Laine 1605.07720)

In the majoron model sterile neutrinos have a new decay mode

$$\frac{\Gamma(N \to \nu \phi)}{\Gamma(N \to \text{SM})} \simeq 4 \times 10^3 \left(\frac{1 \,\text{GeV}}{M_N}\right)^2 \left(\frac{1 \,\text{TeV}}{v_L}\right)^2$$

Miguel Escudero (TUM)

Cosmological Implications

The effect is enhanced if there is a primordial population:

Miguel Escudero (TUM)

Effect on the CMB

Neutrino-Majoron interactions can compensate the enhanced expansion history!

Miguel Escudero (TUM)

The Hubble Tension

Summary of Escudero & Witte 21'

- Sterile Neutrinos can provide just the right primordial majoron population
- A full Planck Legacy data analysis shows that:

for
$$\Delta N_{\mathrm{eff}}^{\mathrm{BBN}} = 0.37$$

 $H_0 = (70.2 \pm 0.6) \, \text{km/s/Mpc}$

$$m_{\phi} = (0.1 - 0.8) \text{ eV}$$

 $v_L = (0.05 - 2) \text{ TeV}$
 $M_N \sim \text{GeV}$

This makes the tension $5\sigma \rightarrow 2.5\sigma$ but with a better CMB fit than Λ CDM!

We argue that in the parameter space of interest these sterile neutrinos can lead to the baryon asymmetry of the Universe via their CP violating oscillations. ARS-Leptogenesis
Akhmedov, Rubakov & Smirnov, hep-ph/9803255
See also Asaka & Shaposhnikov, hep-ph/0505013

provided
$$|\lambda_{\phi H}| < 10^{-7} \frac{v_L}{1 \text{ TeV}} \sqrt{\frac{10^5 \text{ GeV}}{T_c}}$$

which requires some fine tuning but at least is protected under RGE flow

Our expectations have been confirmed by:

2109.10908 Flood, Porto, Schlesinger, Shuve & Thum 2110.14499 Fischer, Lindner & van der Woude

Miguel Escudero (TUM)

The Hubble Tension

Mumbai 10-06-22

Final Summary

The Majoron as a solution to the Hubble tension

- The Majoron can substantially relax the tension and can accommodate $H_0 \simeq 70 \,\mathrm{km/s/Mpc}$ while providing a good CMB fit.
- The Majoron is a well motivated particle:
 - It is predicted within the type-I seesaw with a global Lepton number symmetry
 - Its interaction rate with neutrinos is naturally very feebly
 - The Majoron mass could be understood from Planck-scale physics and points to $m_{\phi} \sim \mathrm{eV}$
- Parameter space to ameliorate the Hubble tension is well motivated: $v_L \sim v_H$
- The sterile neutrinos in the model play a crucial role: By providing by their decays $\Delta N_{\rm eff}^{\rm BBN} \sim 0.3$ In addition, they could be responsible for low-scale Leptogenesis

Miguel Escudero (TUM)

The Hubble Tension

Outlook

• Collider tests $K \to \mu N$ (NA62) $\pi \to e N$ (PIENU)

Refined cosmological analysis

We are doing a careful cosmological analysis Improved collision term: <u>Stefan Sandner</u>, Escudero & Witte 2208.XXXXX

Cosmological tests

There are signals for ongoing/upcoming CMB experiments: ACT, SPT, Simons Observatory and CMB-S4

My main conclusion:

Regardless of what happens with the Hubble tension, we will learn about fundamental physics! Probing a well motivated neutrino mass model with $\Lambda \sim 1\,TeV!$

Acknowledgements

Unterstützt von / Supported by

Alexander von Humboldt Foundation

Miguel Escudero (TUM)

The Hubble Tension

London 2019

Mumbai 10-06-22

Time for Questions and Comments

Thank you a lot for the invitation and for your attention!

Miguel Escudero (TUM)

The Hubble Tension