Black Hole Superradiance of Self-Interacting Scalar Fields

based on arXiv: 2011.11646

with Masha Baryakhtar, Marios Galanis, and Robert Lasenby

Olivier Simon

(Stanford University)

THEP Seminar Series at Indian Institute of Technology Mumbai April 20, 2022

Ultra-Light Bosons and Black Holes

This work

- independently of cosmological abundance
- Weakly interacting scalars spin down BHs and source GWs
- More strongly interacting scalars source scalar waves

Rotating black holes can source "clouds" of ultra-light bosons through superradiance

Outline

- 1. Review of black hole of superradiance
- 2. Self-interactions in the SR cloud
- 3. (New) Signatures at large self-interactions

Review of Black Hole Superradiance

Superradiance

Object scattering off a stationary cylinder will lose energy and angular momentum if there is friction (dissipation)

Superradiance

Objects scattering off a rotating cylinder will extract energy and angular momentum if a kinematic condition is satisfied:

 $\Omega_{\rm c} > v_{\varphi}$

• Dissipation now leads to enhancement!

Wave Superradiance

 A wave incident on rotating dissipative surface (\(\partial_t\) or absorbing B.C.) will grow in amplitude by extracting energy and angular momentum if kinematic condition satisfied

$$\Omega_c > \omega/m$$

- Growth in amplitude = more quanta
- Growth proportional to probability of absorption when object at rest

M

Zel'dovich '71, Zel'dovich '72

BH Superradiance

• Nature provides us with rapidly rotating absorbers: rotating BHs!

 $\Omega_{\rm BH} > \omega/m$

- Growth in amplitude = more quanta
- Growth proportional to probability of absorption when object at rest

Zel'dovich '71, Zel'dovich '72, Starobinski '73

BH Superradiance of Massive Scalars

 $G_{\rm N}M_{\rm BH}\mu$

• Newtonian potential confines motion in massive bound states around the BH

• Growth largest when **Compton** wavelength is comparable to BH radius

$$r_g \sim \lambda_C \sim 3 \, \mathrm{km} \left(\frac{7 \times 10^{-11} \, \mathrm{eV}}{\mu} \right)$$

• Repeated amplification makes state unstable to growth

• Massive bound states approximately hydrogenic

$$V(r) = -\frac{G_{\rm N}M_{\rm BH}\mu}{r} = -\frac{\alpha}{r}$$

• "Fine-structure constant"

$$\alpha \equiv G_{\rm N} M_{\rm BH} \mu = r_g \mu = 0.1 \left(\frac{M_{\rm BH}}{10M_{\odot}}\right) \left(\frac{\mu}{10^{-12} \text{ eV}}\right)$$

For astrophysical BHs: $10^{-2} \lesssim \alpha \lesssim 0.5$ "ultra

Quasi-normal mode frequencies

Occupation number

 $N_c \simeq \Delta J_{\rm BH} \simeq G_{\rm N} M_{\rm BH}^2 \simeq 10^{76} (M/M_{\odot})^2$

Cloud grows from zero-point fluctuations (like laser, "spontaneous emission" -> "stimulated emission") Fine + hyper-fine corrections

• If new light scalar exist, fast spinning BHs will spin down as energy and angular momentum is converted to scalar cloud Black Hole Spin *a**

$$\dot{N}_{n\ell m} = \Gamma_{n\ell m}^{\rm SR} N_{n\ell m} + \dots$$
$$\dot{J}_{\rm BH} = -m\Gamma_{n\ell m}^{\rm SR} N_{n\ell m}$$

1.0

0.8

0.6

0.2

0.0

• If new light scalar exist, fast spinning BHs will spin down as energy and angular momentum is converted to scalar cloud

$$\dot{N}_{n\ell m} = \Gamma_{n\ell m}^{\rm SR} N_{n\ell m} + \dots$$
$$\dot{J}_{\rm BH} = -m\Gamma_{n\ell m}^{\rm SR} N_{n\ell m}$$

1.0

0.8

Black Hole Spin a_* 0.6 0.4

0.2

0.0

• If new light scalar exist, fast spinning BHs will spin down as energy and angular momentum is converted to scalar cloud Black Hole Spin a_*

$$\dot{N}_{n\ell m} = \Gamma_{n\ell m}^{\rm SR} N_{n\ell m} + \dots$$
$$\dot{J}_{\rm BH} = -m\Gamma_{n\ell m}^{\rm SR} N_{n\ell m}$$

1.0

0.8

0.6

0.2

0.0

"Purely" Gravitational SR

• Cycles of growth via SR and depletion via annihilations to GWs

• Only 1 level at the time builds significant occupation

Self-Interactions in the SR Cloud

Self-Interacting Scalars

Well motivated scalar extensions to the Standard Model are expected to have quartic self-interactions.

 $\mathcal{L} \supset \frac{\lambda}{4!} \phi^4$

Self-Interacting Scalars

mass:
$$\mu \simeq 6 \times 10^{-12} \text{ eV} \left(\frac{10^{18} \text{ GeV}}{f_a} \right)$$

(axiverse)

Green et al. '88, Svreck & Witten '06, Arvanitaki et al. '10, Dine '16, Halverson et al. '17, Bachlechner et al '19

$$\lambda = \frac{\mu^2}{f^2} \sim \frac{\mu^2}{f_a^2} \simeq 10^{-74} \left(\frac{\mu}{10^{-12} \text{ eV}}\right)^2 \left(\frac{10^{16} \text{ GeV}}{f}\right)^2$$

• E.g. QCD axion solution to strong CP problem $V(\phi) \approx m_{\pi}^2 f_{\pi}^2 \left[1 - \cos\left(\frac{\phi}{2}f_a\right)\right]$

self-coupling:
$$\lambda \simeq 0.3 \mu^2 / f_a^2 \simeq 10^{-80} \left(\frac{\mu}{10^{-12} \epsilon} \right)$$

"Axion-like particles": Arise naturally as KK modes from compactification of in string theory

Self-Interacting Scalars $\lambda_{C/m}$

 $\mu/{
m eV}$

Self-Interacting Scalars $\lambda_{C/m}$

 μ/eV

Self-Interacting Scalars $\lambda_{C/m}$

 μ/eV

Self-energy corrections Self-energy corrections

Bound-continuum interactions

Non-relativistic emissions

At what value of $\lambda = \mu^2/f^2$ do self-interactions become important? What are the new effects?

Relativistic emissions

(suppressed in α^{large} b/c cloud is non-rel.)

Gruzinov '16

Two-level Quasi-Equilibrium

- A quasi-equilibrium between the two levels is possible
- Cloud stops growing. Momentum circulated from BH to infinity via cloud

Regimes of self-interactions

 \mathcal{U}

 $T = 10^{10} \text{ yr}$ $a_*(t_0) = 0.9$ $M = 10 M_{\odot}$

0.5

(A) "Gravitational SR". Spindown, GW annihilations.

(B) "Moderate self-interactions". Early 322 growth. Spindown, GW annihilations.

(C) "Large self-interactions". Simultaneous growth. Spindown. Scalar waves.

(D) "Very large self-interactions". Simultaneous growth. No spindown. Scalar waves.

Small Interactions: Gravitational SR

Moderate Interactions: Late Equilibrium

Large Interactions: Early Equilibrium

(Very) Large Interactions: No Spindown

Collapse From Attractive SI (Bosenova)

• Recall: For "gravitational SR", number of particles in the cloud is

$$N_c \simeq G_N M_{\rm BH}^2$$

entirely determined by BH mass

• Use variational method to estimate critical occupation number and compare to what is expected from 2-level evolution from zero-point fluctuations

$$\begin{split} V(\tilde{r}_c) \simeq N_c \frac{\ell(\ell+1)+1}{2\mu \tilde{r}_c^2} - N_c \frac{\alpha}{\tilde{r}_c} - \frac{N_c^2}{f^2 \tilde{r}_c^3} \\ \uparrow \\ \end{split} \\ \end{split} \\ \text{modified Bohr radius} \end{split}$$

 $N_c^{\rm crit} \sim \alpha^{-1} f^2 / \mu^2$

• Recall: For "gravitational SR", number of 10^{-10} particles in the cloud is

$$V_c \simeq G_N M_{BH}^2$$

f entirely determined by BH mass of the second se

• Use variational method to estimate critical occupation number and compare to what is expected from 2-level evolution from zero- 10^{-19} point fluctuations

$$\begin{split} V(\tilde{r}_c) \simeq N_c \frac{\ell(\ell+1)+1}{2\mu \tilde{r}_c^2} - N_c \frac{\alpha}{\tilde{r}_c} - \frac{N_c^2}{f^2 \tilde{r}_c^3} \\ \uparrow \\ \end{split} \\ \end{split} \\ \text{modified Bohr radius} \end{split}$$

Collapse from SI (Bosenova)

Collapse from SI (Bosenova)

GeV/f

• Recall: For "gravitational SR", number of particles in the cloud is

$$N_c \simeq G_N M_{\rm BH}^2$$

entirely determined by BH mass

• Use variational method to estimate critical occupation number and compare to what is 10^{-17} expected from 2-level evolution from zeropoint fluctuations 10^{-19}

$$\begin{split} V(\tilde{r}_c) \simeq N_c \frac{\ell(\ell+1)+1}{2\mu \tilde{r}_c^2} - N_c \frac{\alpha}{\tilde{r}_c} - \frac{N_c^2}{f^2 \tilde{r}_c^3} \\ \uparrow \\ \end{split} \\ \end{split} \\ \text{modified Bohr radius} \end{split}$$

$N_{211}/N_{211}^{\rm crit}$

 $N_c^{\rm crit} \sim \alpha^{-1} f^2 / \mu^2$

 α

Signatures at large self-interactions

Bounds From Spindown

• Fast spinning BHs can be used to place bounds on parameter space of light scalars

Arvanitaki et al. '15

Bounds From Spindown

• Because large selfinteractions prevent spindown, bounds are relaxed at large couplings

Updated bounds on axion masses

• For large self-interactions, detecting coherent, monochromatic axion waves becomes possible

• Unlike most astrophysical signals

Fixed phase relation between radiation and its source. Entire cloud is coherent emitter, like laser.

Axion Waves: Long-lasting

- Benefit from very long signal times: thousands to billions of years
- Longer than age of the Universe for $f \lesssim 10^{12} \text{ GeV}$

Axion Waves: Long-lasting

- Benefit from very long signal times: thousands to billions of years
- Longer than age of the Universe for $f \lesssim 10^{12} \text{ GeV}$

 μ/eV

Generate lo

$$\begin{array}{c} \mbox{Unsuppressed Signal} \\ \mbox{rate local axion energy density} \\ \rho_{\phi, \ {\rm Earth}} \simeq 10^{-6} \ {\rm GeV/cm}^3 \left(\frac{\alpha}{0.1}\right)^6 \left(\frac{10 \ {\rm kpc}}{r}\right)^2 \left(\frac{f}{10^{16} \ {\rm GeV}}\right)^2 \end{array}$$

• SM interactions are sensitive to

$$\theta \simeq \frac{\sqrt{\rho_{\phi}}}{f} \simeq 10^{-19} \left(\frac{10^{-12} \text{ eV}}{\mu}\right) \left(\frac{\alpha}{0.1}\right)^3 \left(\frac{10 \text{ kpc}}{r}\right)$$
$$\propto f^0$$

Signal does not decouple even as the cloud gets smaller!

Direct detection

• Proposed DM detectors use axion "wind" coupling to Standard Model spins

 $H_{\text{wind}} = g_N \vec{\sigma} \cdot \vec{\nabla} \phi \equiv \vec{B}_a \cdot \vec{\mu}_n$

where $g_N \simeq C_N/f$.

• Axion creates an effective oscillatory "magnetic" field

$$\vec{B}_a \propto C_N \times (\mu \vec{v}) \times \theta_0 \cos \left[\text{kHz} \left(\frac{\mu}{10^{-12} \text{ eV}} \right) \right]$$

For non-rel. radiation from the cloud

 $\vec{v} \simeq \alpha/6$ (non-relativistic, but faster than DM)

• Look for oscillating "magnetic" field by looking for precession of polarized nuclear spins (e.g. CASPER)

• Look for signal that is nearly constant in time

• Signal independent of interaction strength

Direct detection

Detectability prospects for nearby BHs

- Look for signal that is nearly constant in time
- Number of expected signals in blind search grows for smaller fbecause signal duration is longer

Direct detection

Expected number of signals in blind search

 μ/eV

• SN1987A constrains $g_N \lesssim 10^{-9} \ {\rm GeV}^{-1}$

• Blind searches could yield large number of signals for a lot of open parameter space

Direct detection

Expected number of signals in blind search

 μ/eV

Summary

configuration in the SR cloud

• "Bosenova" phenomenon likely does not occur

• Large self-interactions suppress BH spindown and GWs but introduces axion waves

• Self-interactions lead simultaneous occupation of two or more levels in a quasi-equilibrium

Backup slides

Superradiance rates

- Larger ℓ can satisfy SR condition for larger μ
- Larger ℓ are exponentially suppressed because of kinetic barrier
- Larger n are suppressed because smaller density near horizon SR condition

$$\Gamma_{n\ell m}^{\rm SR} \sim n(r_g) r_g^2 \left(\frac{m\Omega_{\rm BH}}{\mu} - 1 \right)$$

$$\sim \frac{\alpha^{5+4\ell} (m\Omega_{\rm BH} - \mu)}{n^3}$$

- Individual event rates small; boosted by large occupation numbers
- Exponential growth for ~ 200 e-folds

Arvanitaki et al. 2015

• Coherent, monochromatic gravitational waves from annihilations in the cloud

- Visible at Advanced LIGO with continuous wave search strategy (similar to isolated neutron stars)
- Can expect 1000+ events from BHs in the MW

GWs Emissions

Self-Interacting Scalars

• Scalar field ϕ with small mass μ

- Axion-Like particles: Pseudo Nambu-Goldstone boson associated with spontaneous breaking of some continuous shift symmetry at some high scale f_a .
- Non-perturbative effects generate potential

$$V(\phi) = g^{(0)} + \frac{g^{(2)}}{2!} \mu^2 \phi^2 + \frac{g^{(4)}}{4!} \frac{\mu^2}{f_a^2} \phi^4 + \dots$$
$$\underbrace{\frac{\lambda}{4!} \phi^4}_{\frac{\lambda}{4!} \phi^4}$$

$$V(\phi) = \mu^2 f_a^2 g(\phi/f_a)$$
 , with $\mu \ll f_a$

Previous Estimates of SI

• People predicted explosive "bosenova" collapse, when attractive self-energy becomes comparable to gravitational binding energy

$$\int n(\vec{r}) \frac{\alpha}{r} d^3 \vec{r} \sim \int \frac{n(\vec{r})^2}{8f^2} d^3 \vec{r}$$

 $N_c \gtrsim 16\pi \alpha^{-1} f^2/\mu^2$

• For fixed $N_c \sim G_N M_{BH}^2$, one can always pick f small enough that collapse occurs.

Largely, no.

If self-interactions are large, can the cloud ever get that large in the first place?

Arvanitaki & Dubovsky '11

• Because large selfinteractions prevent spindown, spin bounds are relaxed at large couplings

 $\int 10^{-16}$ 10^{-17}

Spin Bounds

Example of updated bounds from a SMBH

 μ/eV

GW Emissions

 10^{4}

 10^{3}

 10^{2}

10

 10^{-1}

Observable Signals

GW annihilations rapidly
 suppressed by smallness of the cloud

 GW transitions enhanced compared to no SI, but too low frequencies for current detectors

Expected number of signals in blind search

 μ/eV

Direct detection

Reach (SNR = 1) for different for difference volume samples and coupling strengths

 $\mu \,(\mathrm{eV})$

Self-Interactions and Other Processes

Bosenova

- Some numerical simulations have observed collapse (Kodama et al. '12, Kodama et al. '15)
- Assumed large initial conditions for $\theta = \phi/f \sim \sqrt{N_c}/f$
- GeV/f• For $a_{\star} = 0.99$ and $\alpha = 0.3$, observed collapse for $|\theta(t_0)| = 0.45$ and no collapse for

Our variational method predicts $|\theta_{\rm max}^{\rm crit}| \simeq 0.42 \left(\frac{\alpha}{0.3}\right)$

$|\theta_{\rm max}|$

Bosenova

- With large self-interactions
- At small enough f, N_c decreases as f decreases further

 $N_c \propto f^2$

 $N_c \gtrsim \alpha^{-1} f^2 / \mu^2$

both sides scale as f²!