Understanding the Top quark

At the LHC and beyond

Poulose Poulose

Department of Physics, IIT Guwahati

25 March 2019

The Standard Model

Top quark (discovery in 1995):

An elementary particle about 180 times heavier than the proton ! The only bare quark that decays before forming bound states, and therefore exposes its interactions with the other SM particles in a direct way.

Top quark being the heaviest elementary particle (so far) has the strongest interaction with the Higgs boson

It is crucial to know the top quark couplings precisely to know the details of Higgs couplings and thus to understand the Electroweak Symmetry Breaking

Top quark is produced at LCH in many processes

pair production

single top with a light jet / W /Z and jet

pair production along with H/Z

Top quark pair production at the LHC

Single Top quark production at the LHC

direct measurement of Vtb

stat

to:

√s [TeV]

More than 30 X 10⁶ single top @ 13 TeV, 100 /fb

ATLAS+CMS Preliminary	$ f_{LV}V_{tb} = \sqrt{\frac{\sigma_{meas}}{\sigma_{theo}}}$ from single top quark produc	ction May 2018			
	$ \sigma_{theo} \stackrel{:}{\text{PRD 83}} \underbrace{\text{NLO+NNLL MSTW2008nnlo}}_{\text{PRD 83}} \underbrace{\text{(2011) 091503, PRD 82 (2010) 054018}}_{\text{PRD 81 (2010) 054028}} \\ \Delta \sigma_{theo} \stackrel{:}{\text{scale}} \oplus \text{PDF} \\ m_{top} = 172.5 \text{ GeV} } $	total theo			
t-channel:					
ATLAS 7 TeV ¹ PBD 90 (2014) 112006 (4 59 fb ⁻¹)	⊢	$1.02 \pm 0.06 \pm 0.02$			
ATLAS 8 TeV ^{1,2} EPJC 77 (2017) 531 (20.2 fb ⁻¹)	<mark>⊨≟⇔</mark> ∔⊣	$1.028 \pm 0.042 \pm 0.024$			
CMS 7 TeV		$1.020 \pm 0.046 \pm 0.017$			
CMS 8 TeV	∕∕ ⊢ <mark>∔●</mark> €┨	$0.979 \pm 0.045 \pm 0.016$			
CMS combination 7+8 TeV	<mark>⊨∔≑⊢1</mark>	$0.998\ \pm\ 0.038\ \pm\ 0.016$			
CMS 13 TeV ² PI B 772 (2017) 752 (2.3 fb ⁻¹)	<mark>⊦ ⊹●</mark> ∔—1	$1.05 \pm 0.07 \pm 0.02$			
ATLAS 13 TeV ² JHEP 04 (2017) 086 (3.2 fb ⁻¹)	I <mark>⊢ i=</mark> i − i	$1.07 \pm 0.09 \pm 0.02$			
Wt:		0.45			
ATLAS 7 TeV PLB 716 (2012) 142 (2.05 fb ⁻¹)	⊢ → → →	$1.03^{+0.15}_{-0.18} \pm 0.03$			
CMS 7 TeV PBL 110 (2013) 022003 (4.9 fb ⁻¹)	├──┼ ●┼───┨	$1.01^{+0.16}_{-0.13}$ + 0.03 -0.04			
ATLAS 8 TeV ^{1,3} JHEP 01 (2016) 064 (20.3 fb ⁻¹)	H	$1.01 \pm 0.10 \pm 0.03$			
CMS 8 TeV ¹ PBI 112 (2014) 231802 (12.2 fb ⁻¹)	, ⊢ <mark>–∔●∔–</mark> ∔	$1.03 \pm 0.12 \pm 0.04$			
	ctopwg <mark>⊢ + + + +</mark>	$1.02\pm 0.08\pm 0.04$			
ATLAS-CONF-2016-023, CMS-PAS-TOP-15-019 ATLAS 13 TeV ² EPJC 78 (2018) 186 (3.2 fb ⁻¹)	F + = + 1	$1.14 \pm 0.24 \pm 0.04$			
		0.93 ^{+0.18} +0.04			
PLB 756 (2016) 228 (20.3 fb ⁻¹)		- 0.20 - 0.04			
	¹ including t ² σ _{theo} : NLC ₃ NPPS205 (including	op-quark mass uncertainty) PDF4LHC11 2010) 10, CPC191 (2015) 74 beam energy uncertainty			
0.4 0.6	0.8 1 1.2 1.4	4 1.6 1.8			
lf _{LV} V _{th} l					

Top quark pair in association with Higgs

Direct measurement of Yukawa coupling

ATLAS, Phys. Lett. B 784 (2018) 173

About 60000 top pairs along with H @ 13 TeV, 100 /fb

Top quark mass

Need to know precisely to understand evolution of Higgs coupling.

Why is it important

$$V(\phi) = \mu^2 \phi^{\dagger} \phi + \lambda (\phi^{\dagger} \phi)^2$$

Running of Higgs self coupling

$$16\pi^{2} \frac{d\lambda}{d\log\mu} = 24\lambda^{2} + 12\lambda g_{htt}^{2} - 9\lambda \left(g^{2} + \frac{g'^{2}}{3}\right)$$
$$-6g_{htt}^{4} + \frac{9g^{4}}{8} + \frac{3g'^{4}}{8} + \frac{3g^{2}g'^{2}}{4}$$

In the SM, at tree level

$$g_{ht}^{SM} = \frac{\sqrt{2} m_t}{v} = \frac{\sqrt{2} \cdot (173.34 \pm 0.76)}{246} = 0.996 \pm 0.004$$

In 2HDM / MSSM
$$g_{ht} = \frac{\sqrt{2} m_t}{v} \frac{\cos \alpha}{\sin \beta}$$

In general
$$g_{htt} = c_t g_{htt}^{SM}$$

$$Y_{d}\bar{Q}_{L}\phi d_{R} - Y_{u}\bar{Q}_{L}\tilde{\phi}u_{R} \qquad y_{t}=g_{htt}$$

Top quark Yukawa influencing the production and decay of the Higgs boson at the LHC

Measurements at LHC

Indirect measurements

 $pp(gg) \rightarrow H \rightarrow \gamma \gamma$

$$(\rightarrow \gamma \gamma) \cdot \frac{\kappa_g^2 \cdot \kappa_\gamma^2}{\kappa_H^2}$$

$$\kappa_V = \kappa_W = \kappa_Z$$
 $\kappa_j^2 = \sigma_j / \sigma_j^{SM}$ or $\kappa_j^2 = \Gamma^j / \Gamma_{SM}^j$

$$\kappa_F = \kappa_t = \kappa_b = \kappa_\tau = \kappa_g$$

$$\sigma \cdot BR (gg \to H \to \gamma\gamma) = \sigma_{SM}(gg \to H) \cdot BR_{SM}(H \to \gamma\gamma) \cdot \frac{1}{2}$$
$$\sigma(gg \to H) * BR(H \to \gamma\gamma) \sim \frac{\kappa_F^2 \cdot \kappa_\gamma^2(\kappa_F, \kappa_V)}{0.75 \cdot \kappa_F^2 + 0.25 \cdot \kappa_V^2}$$

$$\kappa_{\gamma}^2(\kappa_F,\kappa_V) = 1.59 \cdot \kappa_V^2 - 0.66 \cdot \kappa_V \kappa_F + 0.07 \cdot \kappa_F^2$$

$$\begin{split} \kappa_{H}^{2} &= 0.57 \cdot \kappa_{b}^{2} + 0.22 \cdot \kappa_{W}^{2} + 0.09 \cdot \kappa_{g}^{2} + \\ &0.06 \cdot \kappa_{\tau}^{2} + 0.03 \cdot \kappa_{Z}^{2} + 0.03 \cdot \kappa_{c}^{2} + \\ &0.0023 \cdot \kappa_{\gamma}^{2} + 0.0016 \cdot \kappa_{(Z\gamma)}^{2} + \\ &0.0001 \cdot \kappa_{s}^{2} + 0.00022 \cdot \kappa_{\mu}^{2} \end{split}$$

New Physics: Through heavy resonance

 $W'^+ \rightarrow t\bar{b}$ and $W'^- \rightarrow \bar{t}b$

ATLAS, Phys.Lett. B788 (2019) 347

This can be relaxed considering

 $g_R \neq g_L$

 $V^L_{\rm CKM} \neq V^R_{\rm CKM}$

(respecting all constraints including those from Flavour Sector)

Frank, Ozdel, PP: arXiv:1812.05681 Phys.Rev. D99 (2019) no.3, 035001

High Luminosity LHC expectations

arXiv: 1812.07831

Spin-2 Resonance

at HL-LHC and HE-LHC

 $\sigma(pp \to t\bar{t}t\bar{t}) = 15.83^{+18\%}_{-21\%}$ fb at 14 TeV

Explores top-top scattering

New physics possibilities not studied well.

Standard Decays of Top quark

b /s / u
$$\Gamma_t = \frac{G_F M_{\text{top}}^3}{8 \pi \sqrt{2}} (|V_{tb}|^2) \left(1 - \frac{M_W^2}{M_{\text{top}}^2}\right)^2 \left(1 + 2 \frac{M_W^2}{M_{\text{top}}^2}\right)$$
$$|V_{tb}| = 1.019 \pm 0.028$$
$$|V_{ts}| = (39.4 \pm 2.3) \times 10^{-3}$$
$$|V_{td}| = (8.1 \pm 0.5) \times 10^{-3}$$

PDG, Phys.Rev. D98 (2018) no.3, 030001

Almost 100% decay to bW

Rare top decays

1) rare top decays (flavor changing neutral currents)

2 body decays:
$$t \to c\gamma$$
, $t \to cg$, $t \to cZ$, $t \to ch$
 $t \to u\gamma$, $t \to ug$, $t \to uZ$, $t \to uh$

3 body decays:
$$t \to c\gamma h$$
, $t \to cgh$, $t \to c\ell^+\ell^-$, ...
 $t \to u\gamma h$, $t \to ugh$, $t \to u\ell^+\ell^-$, ...

2) exotic top decays (into new physics particles)

light charged Higgs: $t \to H^{\pm}b$, $t \to H^{\pm}s$, $t \to H^{\pm}d$ light neutral gauge boson: $t \to Z'c$, $t \to Z'u$ dark matter: $t \to \chi \chi c$, $t \to \chi \chi u$

$$\Gamma_t \simeq \frac{g_2^2}{64\pi} \left(\frac{m_t}{m_W}\right)^2 |V_{tb}|^2 m_t$$

Standard channel

top FCNCs are 1-loop suppressed, CKM suppressed and strongly GIM suppressed

$$\mathcal{A}_{t
ightarrow c \gamma} \propto rac{e}{16 \pi^2} rac{G_F}{\sqrt{2}} rac{m_b^2}{m_W^2} V_{tb} V_{cb}^*$$

 \rightarrow BR($t \rightarrow c\gamma$)_{SM} $\simeq 5 \times 10^{-14}$

SM predictions

(Aguilar-Saavedra hep-ph/0409342)

$$\begin{split} &\mathsf{BR}(t\to c\gamma)\simeq 5\times 10^{-14} \quad , \quad &\mathsf{BR}(t\to u\gamma)\simeq 4\times 10^{-16} \\ &\mathsf{BR}(t\to cg)\simeq 5\times 10^{-12} \quad , \quad &\mathsf{BR}(t\to ug)\simeq 4\times 10^{-14} \\ &\mathsf{BR}(t\to cZ)\simeq 1\times 10^{-14} \quad , \quad &\mathsf{BR}(t\to uZ)\simeq 8\times 10^{-17} \\ &\mathsf{BR}(t\to ch)\simeq 3\times 10^{-15} \quad , \quad &\mathsf{BR}(t\to uh)\simeq 2\times 10^{-17} \end{split}$$

Beyond the SM

2HDM

 $t \rightarrow c \ Z/\gamma/g$ at the 1 loop level

MSSM

Present Experimental status

and comparison with model predictions

Assuming only one such coupling present at a time

Top Working Group Summary Plots

ATL-PHYS-PUB-2018-034

Apart from non-standard decays, large FCNC can invoke rare production channels

Standard Single top productions

Non-Standard Single top productions include

Chen, Hou, Kao, Kohda 1304.8037; Atwood, Gupta, Soni 1305.2427 Greljo, Kamenik, Kopp 1404.1278; ...

Model Independent - Effective couplings

$$\begin{aligned} -\mathcal{L}_{tqZ(\gamma)} = & \frac{g}{2c_W} \bar{q} \gamma^{\mu} (X_{qt}^L P_L + X_{qt}^R P_R) t Z_{\mu} + \frac{g}{2c_W} \bar{q} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} (\kappa_{qt}^L P_L + \kappa_{qt}^R P_R) t Z_{\mu} \\ &+ e \bar{q} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} (\kappa_{qt}^L(\gamma) P_L + \kappa_{qt}^R(\gamma) P_R) t A_{\mu} + \text{H.c}, \end{aligned}$$

,

t
$$X_{qt}$$
, κ_{qt}

$$\begin{split} \Gamma(t \to qZ)_{\gamma} &= \frac{\alpha}{32 \, s_W^2 c_W^2} |X_{qt}|^2 \frac{m_t^3}{M_Z^2} \left[1 - \frac{M_Z^2}{m_t^2} \right]^2 \left[1 + 2 \frac{M_Z^2}{m_t^2} \right] \\ \Gamma(t \to qZ)_{\sigma} &= \frac{\alpha}{16 \, s_W^2 c_W^2} |\kappa_{qt}|^2 \, m_t \left[1 - \frac{M_Z^2}{m_t^2} \right]^2 \left[2 + \frac{M_Z^2}{m_t^2} \right] \,, \\ \Gamma(t \to q\gamma) &= \frac{\alpha}{2} \, |\lambda_{qt}|^2 \, m_t \,, \\ \Gamma(t \to qg) &= \frac{2\alpha_s}{3} \, |\zeta_{qt}|^2 \, m_t \,, \\ \Gamma(t \to qH) &= \frac{\alpha}{32 \, s_W^2} |g_{qt}|^2 \, m_t \left[1 - \frac{M_H^2}{m_t^2} \right]^2 \,. \end{split}$$

$$\begin{aligned} &\operatorname{Br}(t \to qZ)_{\gamma} = 0.472 \; X_{qt}^2 \,, \\ &\operatorname{Br}(t \to qZ)_{\sigma} = 0.367 \; \kappa_{qt}^2 \,, \\ &\operatorname{Br}(t \to q\gamma) = 0.428 \; \lambda_{qt}^2 \,, \\ &\operatorname{Br}(t \to qg) = 7.93 \; \zeta_{qt}^2 \,, \\ &\operatorname{Br}(t \to qH) = 3.88 \times 10^{-2} \; g_{qt}^2 \,. \end{aligned}$$

Current Limits:

$Br(t \to Zu(c)) < 1.7(2.4) \times 10^{-4}$	=> X_{qt} , κ^L_{qt} < 0.02	ATLAS JHEP 07 (2018) 176
$BR(t \rightarrow ug) \le 4.0 \times 10^{-5}$ $BR(t \rightarrow cg) \le 2.0 \times 10^{-4}$	< 0.002 < 0.005	ATLAS Eur.Phys. J.C. 76 (2016) 55
$\begin{aligned} \mathrm{BR}(t \to u\gamma) &\leq 1.3 \times 10^{-4} \\ \mathrm{BR}(t \to c\gamma) &\leq 1.7 \times 10^{-3} \end{aligned}$	< 0.017 < 0.063	ATLAS JHEP 04 (2016) 35
$\begin{aligned} \mathrm{BR}(t \to uH) &\leq 2.4 \times 10^{-3} \\ \mathrm{BR}(t \to cH) &\leq 2.2 \times 10^{-3} \end{aligned}$	< 0.025 < 0.024	ATLAS JHEP 1710 (2017) 120
vpoctations at $HI = I HC (3/ab)$	na Mazakiza ana katen zini kena kana kana kana kana kana kena kana ka	n an an tha na ann an an an an an an ann ann an an

Expectations at HL-LHC (3 /ab) $BR(t \rightarrow cZ) \le 5.8 \times 10^{-5}$ $BR(t \rightarrow uZ) \le 4.3 \times 10^{-5}$ $BR(t \rightarrow q\gamma) \le 2.5 \times 10^{-5}$ $t \rightarrow Hq$ < 1.2 ×10^{-4}ATL-PHYS-PUB-2016-019ATL-PHYS-PUB-2013-007

Expected reach on the BR

Top Quark Working Group 1311.2028

Process	Br Limit	Search	Dataset	Reference
$t \to Zq$	$2.2 imes 10^{-4}$	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	300 fb^{-1} , 14 TeV	[140]
$t \to Zq$	7×10^{-5}	ATLAS $t\bar{t} \rightarrow Wb + Zq \rightarrow \ell\nu b + \ell\ell q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	[140]
$t \to Zq$	$5(2) \times 10^{-4}$	ILC single top, γ_{μ} ($\sigma_{\mu\nu}$)	$500 \text{ fb}^{-1}, 250 \text{ GeV}$	Extrap.
$t \to Zq$	$1.5(1.1) \times 10^{-4(-5)}$	ILC single top, γ_{μ} ($\sigma_{\mu\nu}$)	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	[141]
$t \to Zq$	$1.6(1.7) imes 10^{-3}$	ILC $t\bar{t}$, γ_{μ} ($\sigma_{\mu\nu}$)	500 fb^{-1}, 500 GeV	[141]
$t\to \gamma q$	8×10^{-5}	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	[140]
$t\to \gamma q$	2.5×10^{-5}	ATLAS $t\bar{t} \rightarrow Wb + \gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	[140]
$t\to \gamma q$	$6 imes 10^{-5}$	ILC single top	$500 \text{ fb}^{-1}, 250 \text{ GeV}$	Extrap.
$t\to \gamma q$	$6.4 imes 10^{-6}$	ILC single top	$500 \text{ fb}^{-1}, 500 \text{ GeV}$	[141]
$t\to \gamma q$	$1.0 imes 10^{-4}$	ILC $t\bar{t}$	500 fb ⁻¹ , 500 GeV	[141]
$t \to g u$	4×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to g u$	1×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to gc$	1×10^{-5}	ATLAS $qg \rightarrow t \rightarrow Wb$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to gc$	4×10^{-6}	ATLAS $qg \rightarrow t \rightarrow Wb$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to hq$	2×10^{-3}	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell q X$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to hq$	$5 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \ell\ell q X$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to hq$	$5 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$	$300 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.
$t \to hq$	$2 imes 10^{-4}$	LHC $t\bar{t} \rightarrow Wb + hq \rightarrow \ell\nu b + \gamma\gamma q$	$3000 \text{ fb}^{-1}, 14 \text{ TeV}$	Extrap.

 \bar{C}^{33}_{uG}

NP through Effective Lagrangian (SMEFT) Anomalous Couplings

$$\begin{split} \mathcal{L} &= \mathcal{L}^{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i + O\left(\frac{1}{\Lambda^4}\right) \\ \mathcal{O}_{hg} &= \left(\bar{Q}_L H\right) \sigma^{\mu\nu} T^a t_R G^a_{\mu\nu}, \quad \mathcal{O}_{HG} = \frac{1}{2} H^{\dagger} H G^a_{\mu\nu} G^{\mu\nu}_a \\ \mathcal{O}_{Hg} &= H^{\dagger} H \left(H \bar{Q}_L\right) t_R \\ \mathcal{O}_{Ht} &= H^{\dagger} D_{\mu} H \bar{t}_R \gamma^{\mu} t_R \\ \mathcal{O}_{HQ} &= H^{\dagger} D_{\mu} H \bar{Q}_L \gamma^{\mu} Q_L \\ \mathcal{O}_{HQ}^{(3)} &= H^{\dagger} \sigma^I D_{\mu} H \bar{Q}_L \sigma^I \gamma^{\mu} Q_L \end{split}$$

Top FCNC throughep > et

S. Behera, R. Rahman, R. Islam, M. Kumar, PP, 1811.04681

$$-\mathcal{L}_{tqZ(\gamma)} = \frac{g}{2c_W} \bar{q} \gamma^{\mu} (X_{qt}^L P_L + X_{qt}^R P_R) t Z_{\mu} + \frac{g}{2c_W} \bar{q} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} (\kappa_{qt}^L P_L + \kappa_{qt}^R P_R) t Z_{\mu} + e \bar{q} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} (\kappa_{qt}^L(\gamma) P_L + \kappa_{qt}^R(\gamma) P_R) t A_{\mu} + \text{H.c},$$

The scattered electron as a discriminator

Lorentz structure of the coupling can be probed.

Something quite hard at LHC

e^{-} e^{+} γ/Z t W^{+} $\nu_{l}(\nu_{e},\nu_{\mu})$ b

$$\begin{split} -\mathcal{L}_{\mathrm{tqZ}(\gamma)} = & \frac{g}{2c_W} \bar{q} \gamma^{\mu} (X_{qt}^L P_L + X_{qt}^R P_R) t Z_{\mu} + \frac{g}{2c_W} \bar{q} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} (\kappa_{qt}^L P_L + \kappa_{qt}^R P_R) t Z_{\mu} \\ &+ e \bar{q} \frac{i\sigma^{\mu\nu} q_{\nu}}{m_t} (\kappa_{qt}^L(\gamma) P_L + \kappa_{qt}^R(\gamma) P_R) t A_{\mu} + \mathrm{H.c}, \end{split}$$

Cooupling	$\kappa^L_{ut}(\gamma)$	$\kappa^R_{ut}(\gamma)$	X^L_{ut}	X^R_{ut}	κ^L_{ut}	κ^R_{ut}	$\kappa^L_{ct}(\gamma)$	$\kappa^R_{ct}(\gamma)$	X^L_{ct}	X^R_{ct}	κ^L_{ct}	κ^R_{ct}
σ_{unpol} (fb)	126.66	127.23	53.97	53.88	89.37	89.49	126.84	127.29	53.99	53.91	89.45	89.39
$\sigma(-80\%, +30\%)$ (fb)	156.5	156.3	77.97	78.09	131.8	131.7	156.5	156.3	77.97	78.09	131.8	131.7
$\sigma(+80\%, -30\%)$ (fb)	157.06	157.89	53.63	54.01	89.18	89.61	157.19	157.75	54.02	53.78	89.50	89.59

Subhasish Behera, Daniel Jeans, PP

We studied the signal (1j + 1b-jet + 1 lepton + missing energy) against the SM background.

Major Backgrounds

cross section (pb)

1. $e^+e^- \to WW \to 2\ell 2\nu$	10.99
2. $e^+e^- \rightarrow ZZ \rightarrow 2\ell 2\nu + 2\ell 2j_z$	0.83
3. $e^+e^- \rightarrow Z \rightarrow \qquad 2j, \ 2b$	0.75
4. $e^+e^- \rightarrow 2e\gamma$,	14.79
5. $e^+e^- \to \mu^+\mu^-h$.	0.01

 $0 < m_t < 240$ $180 < M_{ti} < 270$ $M_{bi} \neq [65, 95]$ $|p_\nu| > 20$ $\cos \theta_\mu < .95, \cos \theta_\nu > -.95$

Process	Nstmulated	$\sigma_{8,+.3}[fb]$	Ne
$\kappa_{ut}^L(\gamma)$	10000	156.5	3130
$\kappa_{ut}^R(\gamma)$	10000	156.3	3126
X_{ut}^L	10000	77.97	1559
X_{ut}^R	10000	78.09	1561
κ_{ut}^L	9500	131.8	2630
κ_{ut}^R	10000	131.7	2634
$e^-e^+ \rightarrow WW \rightarrow l \nu_l 2 j$	279897	10992.9	21985
4f_WW_semileptonie			
$e^-e^+ \to ZZ \to 2l2j + 2\nu_l2j$	535103	856.927	1713
4f_ZZ_semileptonie			
$e^-e^+ \to Z \to 2j+2b$	476642	78046.5	15609
2f_Z_hadronie			
$e^-e^+ \rightarrow \mu^+(e^+)\mu^-(e^-)h$	30126	10.651	213
higgs_ffh_Pllh			

	before	after
signal	263400	118134
		T
background	21985832	3533

1713854

156092928

21302

101.04					
	176719	176344	142540	141789	138408
2522	180088	179557	145046	144358	141607
აეკა	90195	89899	75085	74757	73369
	87757	87460	68328	67907	66735
	151223	150862	122615	121866	119480
1439	148952	148557	120558	120005	118134
	18790	18511	3905	3533	3533
	3602	3535	3215	1867	1439
20					
	2116	2116	41	41	20
139					
100	243	238	237	168	139

Kinematic Selections to improve the signal significance.

80% left-polarised electron beam 30% right-polarised positron beam

_jet_Cos_th_zutr_maj_bkg

angular distribution of the light jet is sensitive to the type of coupling

potential to distinguish the Lorentz structure of the coupling

Summary

Apart from probing resonant production of new physics particle, precise measurement of top quark couplings can provide information of physics beyond the Standard Model.

Precise knowledge of the top quark couplings are essential to extract Higgs coupling information.

LHC producing plenty of top quark pairs, can perform precision measurements including rare top decays.

Other colliders like electron-proton collider, and the ILC can complement the LHC studies, and have the potential to provide additional informations like the Lorentz structure of the couplings, which are difficult to probe at the LHC.

