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Introduction to black holes



What is a black hole?

I Consider a spherical planet/star with mass M and radius R.
The escape velocity from the object is

1
2 mv 2 = GNMm

R

I When R < Rs ≡ 2GNM/c2, one needs v > c – nothing, not
even light, can escape from the surface of such an object.
The object is black. [Michell (1784), Laplace (1798)]

I In GR, the metric due to a star/planet [Schwarzschild (1916)]

ds2 =
(

1− RS
r

)
c2dt2−

(
1− RS

r

)−1
dr 2−r 2(dθ2+sin2 θdϕ2) .

I When the object has a radius less than RS , then it is a black
hole with an event horizon at r = RS .

I The Schwarzschild radius for the sun is about 3 kilometres.
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Formation of black holes

1. Stellar collapse: When a star exhausts is source of
thermonuclear fuel, it will collapse due to its own gravitational
atraction. The end-point depends on its mass M.
I For M < 1.4M�, the pressure due to electrons provides

stabiilty leading to white dwarfs.
I For < 1.4M� < M . 2M�, electrons combine with protons to

form neutrons and neutron pressure stabilises leading to
neutron stars.

I For M > 2M�, if the star does not become a supernova, then
it will continue to collapse until it becomes a black hole.

The typical mass range for such black holes is expected to be
2M� < M . 100M�.

2. The centres of galaxies seem to contain huge black holes with
masses in the range [105, 1010]M�.

3. Primordial black holes: These were formed in the early
universe in regions of high density. There is no range for their
masses and we have not seen any.



The massive black hole in NGC 1277 2-5×109M�



GW150914 – the first detection of gravitational waves

The announcement

On September 14, 2015 at
09:50:45 UTC the two
detectors of the Laser
Interferometer
Gravitational-Wave
Observatory (LIGO)
simultaneously observed a
transient gravitational-wave
signal. The signal sweeps
upwards in frequency from 35
to 250 Hz with a peak
gravitational-wave strain of
1.0× 10−21.



The image of the black hole

The image shows a bright ring formed as light bends in the intense
gravity around a black hole that is 6.5 billion times more massive
than the Sun. Credit: Event Horizon Telescope Collaboration



Charged black holes

I The Reissner-Nordström black hole is a solution to
Einstein-Maxwell’s equations. (in units where c = 1 and
GN = 1)

ds2 = f (r) dt2 − f (r)−1dr 2 − r 2dΩ2 .

with f (r) = 1− 2M
r + q2

e
r2 and electric field Frt = qe

4πr2 .

I It is the most general spherically symmetric static soln.
I There are three situations (D ≡ (M2 − q2

e ) )
I [D > 0] There are two horizons at M ±

√
D. non-extremal

I [D = 0] Both the horizons coincide. extremal

I [D < 0] There is no horizon. naked singularity

I Cosmic Censorship Hypothesis:
Nature forbids nakedness. [Penrose (1969)]



Black hole thermodynamics

Bekenstein (1972-73) observed that black holes satisfied laws
similar to those in thermodynamics. [See Scholarpedia]

I Zeroth Law: The surface gravity κ of a black hole is a
constant on the horizon. κ = −f ′(rh)/2

I First Law: δM = κ
8π δA + φ δqe . A = 4πr 2

h

I Second Law: δA ≥ 0 in any process. [Hawking]

Bekenstein’s analogy suggests the identifications:

U = M ; T ∼ κ and S ∼ A .

Using semi-classical arguments, Hawking (1974) showed that black
holes behave as black bodies with a temperature, TH = ~κ

2π . This is
known today as the Hawking temperature.



Black hole thermodynamics

I Using dU = TdS , we see that

S =
A

4~
= kB

Ac2

4GN~
= kB

`2
Pl

A

4

I This implies that a black hole carries an entropy proportional
to the area measured in Planck units.

I The Hawking temperature of the RN black hole is

TH =
~
√

M2 − q2
e

2πr 2
h

, rh ≡ M +
√

M2 − q2
e

I An extremal RN black hole thus has TH = 0.
I In stat. mechanics, at zero temperature, one has

Sstat = kB log degeneracy .

I Can one provide a statistical description of SBH for extremal
black holes? SBH

?
= Sstat
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Understanding black hole entropy

I We have seen that the most general static spherical
symmetric black hole solution in GR is described by only two
parameters, its mass and charge. How does this huge
degeneracy ∝ eA/4 arise?

I As in thermodynamics, we treat mass and charge as
macroscopic variables (like the volume of an ideal gas). One
needs a microscopic theory (analogous to the statistical
mechanics of an ideal gas).

I One needs to ‘count’ configurations in this microscopic theory
satisfying the macroscopic constraints and compute its
degeneracy.

I Finally, one needs to compare it with the result on the
macroscopic side.

We will consider only extremal black holes in this talk.



Black holes in string theory



Understanding black hole entropy in string theory

I In order to be able to do the comparison, we should be able to
first compute the entropy in the two descriptions – one
macroscopic and the other microscopic.

I We will focus on examples that arise from string theory.
These differ from GR on several fronts.
I There are more fields – gauge fields, scalar fields (‘moduli’).
I The string effective action has an infinite set of higher

derivative corrections.

I On the macroscopic side: Does the area law hold in this
setting? Does the entropy depend on the moduli?

I On the microscopic side: How do we carry out the counting?



A first attempt

I String theory has two parameters: `s – the string length and
gs – the string coupling. Perturbative string theory
corresponds to gs → 0.

I Consider a string state at level n – it has degeneracy

d(n) ∼ ec
√
n and mass M ∼

√
n/`s . =⇒ Sstat ∼

√
n .

I From the string theory effective action, one has GN = g 2
s `

2
s .

=⇒ SBH ∼ GNM2 ∼ g 2
s n .

I Clearly the dependence on n don’t agree.

I The Schwarzschild radius Rs ∼ GNM = g 2
s

√
n`s . The string

perturbative regime is when Rs � `s (or g 2
s

√
n� 1) while the

semi-classical gravity is valid when g 2
s

√
n� 1.

I The two results differ in general but agree when Rs ∼ `s .



How do we compare?

I A key ingredient in making this comparison work is
supersymmetry.

I In supersymmetry, there are quantities called ‘indices’ that are
protected from several kinds of corrections and one can safely
interpolate from the string regime to the gravity regime.

I This is achieved by considering a class of blackholes that are
called BPS (after Bogomolnyi-Prasad-Sommerfield) or
supersymmetric black holes – they correspond to solutions
that preserve a fraction of the supersymmetry – ‘half’,
‘quarter’ and so on in the string theory under consideration.

I Another simplification is to consider zero-temperature i.e.,
extremal black holes.

I This approach has lead to many of the successful comparisons
that I will describe next.



The first successes [1995-1996]

I For the heterotic string on T 6, Sen shows that electrically
charged black holes are realised microscopically as the states
of the heterotic string and computes Sstat. However, SBH = 0
but he argued that higher-derivative corrections lead to a
non-zero answer with Sstat ∝ SBH .

I In type II string theory on K 3× S1, Strominger and Vafa
show that Sstat = SBH for an extremal five-dimensional black
hole in the limit of large charges. The microscopic system
consists of D1/D5 branes wrapping K 3× S1.

I In Sen’s example, Dijkgraaf, Verlinde2 (DVV) magically
conjured up a modular form (the Igusa cusp form) generates
the degeneracy of extremal dyonic black holes and that
Sstat = SBH for large charges.

I So this is the first four-dimensional model where the BH
entropy was recovered.



The toy model: N = 4 supersymmetric string theory

I We focus on a four-dimensional string theory compactification
obtained by compactifying the 10-dimensional heterotic string
on a six-torus.

I String dualities relate this model to the type II string theories
compactified on K 3× T 2.

I This theory generically has 28 vector fields and thus charged
black holes carry a vector of 28 electric/magnetic charges. Let
qe/qm represent these charges.

I Form the following three ‘scalars’ under T -duality:

qe · qe , qe · qm , qm · qm .

I The Bekenstein-Hawking entropy of these (dyonic) black holes
is

SBH = π
√
q2
e q2

m − (qm · qm)2 .



Small black holes

I For electrically charged black holes, SBH = 0. Geometrically,
the horizon has zero radius in Einstein-Maxwell theory.

I However, string theory has higher derivative corrections that
can change the above conclusion. Consider the following R2

correction:

δL = φ(a,S)
[
RµνρσRµνρσ − 4RµνRµν + R2

]
I There is a formula due to Wald that incorporates a class of

higher derivative corrections. There is also another formalism
called the entropy function method due to Sen.

I Sen computed the entropy for extremal dyonic black holes,
with charges (qe ,qm), for this correction

SBHW = π
√
q2
e q2

m − (qe · qm)2

+ 64π2φ

(
qe ·qm
q2
m
,

√
q2
e q2

m−(qe ·qm)2

q2
m

)
+ · · ·



The entropy of small black holes

I SBH = 0 for these black holes.

I We need to carefully take the limit qm → 0 in SBHW for
dyonic black holes to obtain the entropy.

I Simple scaling arguments using the tree-level effective action
show that SBHW ∝

√
q2
e .

I A detailed computation for the heterotic string on T 6 gives
for large q2

e
SBHW = 4π

√
q2
e

2 .

I This is mapped to a heterotic string state in the microscopic

side with level n = q2
e

2 whose degeneracy is known to be
exp(4π

√
n) at large n. Hence Sstat = SBHW . [Dabholkar (2006)]



The microscopic computation

(Precision counting)



Precision counting

I AL (Alert Listener) would have noticed that all the matching
that we have discussed so far occurred in the limit of large
charges.

I AL would ask: Can we go away from this limit?

I On the macroscopic side, we have already seen that the
sub-leading contribution to dyonic black holes arose from the
R2 correction.

I We will now see how to organise the counting on the
microscopic side. Can we then reproduce the sub-leading
contribution for a dyonic black hole?

I The answer is yes! In fact, the computation is done via the
saddle-point method and it turns out (not always so!) that
the function that has to be extremised is identically the
entropy function.



Organising the counting

I Using ideas from statistical mechanics, one sees that it is
simpler to construct generating functions for the counting
problems.

I Recall that the canonical partition function in statistical
mechanics is the weighted sum over configurations of a fixed
energy with weight exp(−βE ). For fixed E , the coefficient of
exp(−βE ) gives the number of states with energy E .

I The counting of BPS states is done in a similar manner.
Introduce a fugacity (qi ) for every charge (ni ). One then
defines

Z(q) =
∑
n∈L

d(n) qn

where d(n) is the number of BPS states (microstates) in a
macrostate with charge vector n. The charge vector n is
valued in a lattice, L, due to charge quantization.
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The physical setting

I Consider type II string theory compactified on K 3× T 2. This
is dual to heterotic string theory on T 6.

I This is a 4 dimensional theory with N = 4 supersymmetry.

I Electric and magnetic charges in these objects are valued in
an even self-dual lattice L of signature (6, 22).

I SO(6, 22;Z) ∼ Aut(L) is the ‘T-duality’ group and PSL(2,Z)
is the S-duality group of symmetries.

I The electric and magnetic charges, (qe ,qm), each transform
as vectors under the T -duality group.

I The quantization of the charges in terms of (continuous)
T -duality invariants is such that

q2
e

2 ∈ Z , qe · qm ∈ Z , q2
m
2 ∈ Z .

We will indicate these integers, respectively, by (n, `,m).

I The three invariants transform as a triplet under PSL(2,Z).



Organising the counting of BPS states

I Let d(n) denote the microscopic degeneracy of electrically
charged 1

2 -BPS states with charge q2
e/2 = n. Let

16

η(τ)24
=

∞∑
n=−1

d(n) qn ,

where q = exp(2πiτ).

I Similarly, let D(n, `,m) denote the microscopic degeneracy of
dyonic 1

4 -BPS states with charges (n, `,m). Let [DVV]

64

Φ10(Z)
=
∑

(n,`,m)

D(n, `,m) qnr `sm ,

where Z = ( τ z
z τ ′ ), r = exp(2πiz) and s = exp(2πiτ ′) and

Φ10(Z) is the weight ten Igusa cusp from of Sp(2,Z).



Refining the generating functions:
Mathieu Moonshine

(SG-KGK, Eguchi-Ooguri-Tachikawa, Cheng, Gaberdiel et al, Eguchi-Hikami, SG, Sutapa Samanta)



What is moonshine?

Moonshine is not a well defined term, but everyone in the area recognizes

it when they see it. Roughly speaking, it means weird connections

between modular forms and sporadic simple groups. It can also be

extended to include related areas such as infinite dimensional Lie algebras

or complex hyperbolic reflection groups. Also, it should only be applied

to things that are weird and special: if there are an infinite number of

examples of something, then it is not moonshine. – R. E. Borcherds

I The classic example is a map that relates conjugacy classes, ρ,
of the Monster group to modular functions, Jρ(τ). This was
dubbed Monstrous Moonshine by Conway.

I In this talk, we will consider Mathieu moonshine which is a
connection between the largest sporadic Mathieu group, M24

and different kinds of automorphic forms.

I We also will see a connection between a simple group L2(11)
and Borcherds-Kac-Moody Lie superalgebras.



Mathieu Moonshine
ηρ(τ)

ρ Φρ
k(Z)

ψρ0,1(τ, z)

ρ – conjugacy class of M24

ηρ(τ) – modular form of SL(2,Z),
ψρ0,1(τ, z) – Jacobi form of weight 0 and index 1,
Φρ
k(Z) – modular form of Sp(2,Z)

ηρ(τ) – generating function of
1
2 -BPS states,
ψρ0,1(τ, z) – (twined) elliptic genus of K 3,

Φρ
k(Z) – generating function of 1

4 -BPS states.
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Refining (twining) the generating function

I The generating functions are obtained from computing
suitable helicity traces – these are indices in spacetime.

I Let g denote a discrete symmetry of finite order that
commutes with supersymmetry.

I Sen refined the index by ‘twining’ by g . Roughly, one inserts a
g into the helicity trace computation.

TrH(· · · ) −→ g
1

:= TrH(g . . .) .

where H is a suitable Hilbert space.

I When g is a symplectic automorphism of order N, then the
generating function of 1

2 -BPS states (resp. 1
4 -BPS states)

turns out to be a modular forms of level N sub-groups of
SL(2,Z) (resp. Sp(2,Z)). [SG-KG Krishna]



Modular Forms
A modular form f (τ) of weight k is a function on
the upper half plane (Im(τ) > 0) such that

f
∣∣
k
γ(τ) := (cτ + d)−k f

(
aτ+b
cτ+d

)
= f (τ) ,

where γ =
(
a b
c d

)
∈ PSL(2,Z). These appear naturally in

computing (chiral) partition functions in CFTs on a torus with
modular parameter τ .

Example

Consider the contribution of the oscillator part of 24 chiral bosons,

Tr
(

qL0− c
24

)
=

1

q
∏∞

m=1(1− qm)
=:
[
η(τ)24

]−1
,

is a modular form of weight 12.

η(τ) however is only a modular form of a sub-group of SL(2,Z).



Mathieu moonshine and multiplicative eta products

I The heterotic string appears as a 1
2 -BPS soliton in type IIA

string theory compactified on K 3. This identification enables
one to explain the appearance of η(τ)−24 as the generating
function of 1

2 -BPS states in the type IIA string.

I Let g ∈ M24 ⊂ S24 be a discrete symmetry that permutes the
24 chiral bosons with conjugacy class ρ = 1a1 · · ·NaN . Then,
the computation after twining by g leads to the map: [SG-KGK]

ρ = 1a1 · · ·NaN −→ ηρ(τ) := η(τ)a1η(2τ)a2 · · · η(Nτ)aN .

I The cycle shapes (conjugacy classes) of M24 are special. They
are balanced cycle shapes i.e., there exists a positive integer
M such that ρ =

∏N
i=1(Mi )ai . ρ = 212 has M = 4.

I This ‘moonshine’ for M24 was first established by Dummit,
Kisilevsky and McKay as well as Mason.



Jacobi Forms

x

A Jacobi form is a two variable generalisation of a modular form.
The second variable is a point z on the torus.
Under modular transformations,

γ =
(
a b
c d

)
∈ PSL(2,Z): τ → aτ+b

cτ+d , z → z
cτ+d .

A Jacobi form g(τ, z) of weight k and index m transforms as

g
∣∣
k,m

γ(τ, z) := e
−2πimcz2

cτ+d (cτ + d)−kg
(

aτ+b
cτ+d ,

z
cτ+d

)
= g(τ, z) ,

and under elliptic transf. z → z + λτ + µ (with (λ, µ) ∈ Z2)

g(τ, z + λτ + µ) = e−2πim(λ2τ+λz) g(τ, z) .

Example

The Jacobi theta functions are Jacobi forms of weight 1
2 and index

1
2 of a suitable sub-group of SL(2,Z).

ϑ1(τ, z) =
∑
`∈Z

q
1
2

(`+ 1
2

)2
r (`+ 1

2
) e iπ` ,



The elliptic genus is a Jacobi Form

I Let M be a CY manifold of complex dimension d and let
H(M) denote the Hilbert space (in the RR sector) of the
two-dimensional (2, 2) SCFT of the supersymmetric nonlinear
sigma model (nlsm) with target space M.

I The elliptic genus is defined as [Landweber, Schellekens-Warner, Witten]

χ(M; τ, z) = TrH(M)

(
(−1)FL+FR qL0−

d
8 q̄L̄0−

d
8 e2πizJ0,L

)
,

where J0,L is the U(1) R-charge for left-movers.

I The elliptic genus is a Jacobi form of weight 0 and index d/2.

Example (The elliptic genus of K3)

ψ0,1(τ, z) = 8
4∑

j=2

[
θj(τ, z)

θj(τ, 0)

]2



Mathieu moonshine in the elliptic genus of K3

I Since K 3 is hyper-Kähler, the supersymmetry of the nlsm is
enhanced to (4, 4).

I Eguchi and Hikami expanded the elliptic genus in terms of

characters, C1 and qh− 1
8B1, of the N = 4 SCA.

ψ0,1(τ, z) = χ(K 3; τ, z) = 24 C1(τ, z) + q−1/8 Σ(τ) B1(τ, z)

I The function Σ(τ) has the following Fourier expansion

Σ(τ) = 2(−1 + 45 q + 231 q2 + 770 q3 + · · · )
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I Since K 3 is hyper-Kähler, the supersymmetry of the nlsm is
enhanced to (4, 4).

I Eguchi and Hikami expanded the elliptic genus in terms of

characters, C1 and qh− 1
8B1, of the N = 4 SCA:

ψρ0,1(τ, z) = (1 + χ23(ρ)) C1(τ, z) + q−1/8 Σρ(τ) B1(τ, z)

I The function Σρ(τ) has the following expansion in terms of
characters of M24

Σρ(τ) = 2(−1 + χ45(ρ) q + χ231(ρ) q2 + χ770(ρ) q3 + · · · )

I Eguchi-Ooguri-Tachikawa noticed that the first few numbers
are the dimensions of irreps of M24. They conjectured the
existence of a family of Jacobi Forms ψρ0,1(τ, z) as given
above.

I The conjecture has been proved by Gannon.



Siegel Modular Forms

I Let Z = ( τ z
z τ ′ ) ∈ H2. It is useful to think of

Z as the period matrix of a genus two surface.

I The Sp(2,Z) matrix M =
(
A B
C D

)
acts as

Z→ M · Z = (AZ + B)(CZ + D)−1.

I A Siegel modular form of weight k is a function Φk(Z ) such
that

Φk(M · Z) = det(CZ + D)k Φk(Z) .

I Taking τ ′ → i∞ (or s = e2πiτ ′ → 0), one obtains the
Fourier-Jacobi series

Φk(Z) =
∞∑

m≥0

φk,m(τ, z) sm .

The Fourier-Jacobi coefficient φk,m(τ, z) is a Jacobi form of
weight k and index m.



The Igusa Cusp Form

I The generating function of 1
4 -BPS states is a Siegel moduar

form of weight 10. [DVV]

I The Igusa cusp form naturally splits into three parts: [David-Sen]
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Φ10(Z)
=

[
4 η(τ)6

θ1(τ, z)2

]
︸ ︷︷ ︸

(i)

×
[

16

η(τ)24

]
︸ ︷︷ ︸

(ii)

×
[

1

E(K 3;Z)

]
︸ ︷︷ ︸

(iii)

,

I Three distinct sectors arise in the type IIB description:
(i) the overall motion of the D1-D5 branes in Taub-NUT space.
(ii) the excitations of the KK-monopole – following the duality

chain, these become the states of the heterotic string.
(iii) the motion of the D1-branes in the world volume of the

D5-branes – this counting leads to the second-quantised
elliptic genus (SQEG) of K 3.

I The SQEG of a Kähler manifold M is [DMVV]

(s E(M;Z))−1 :=
(

1 +
∞∑

m=1

sm χ(Sm(M); τ, z)
)
,



Deconstructing the Igusa Cusp Form

I Sm(M) = (M×m/Sm) – this is the moduli space of m
identical bosonic zero-branes moving on M.

I Let us denote χ(Sm(K 3); τ, z) by ψ0,m(τ, z) as it is a Jacobi
form of weight zero and index m.

I The CFT for S2(K 3) is constructed as a permutation orbifold.

I Standard CFT arguments show that [DVV]

ψ0,2(τ, z) = 1
2 [ψ0,1(τ, z)]2 + T (2) · ψ0,1(τ, z) ,

where T (m) is defined as follows:

T (m) · ψ0,1(τ, z) :=
1

m

∑
ad=m

d−1∑
b=0

ψ0,1

(
aτ+b
d , az

)
.

Formulae such as the one above show that ψ0,1(τ, z)
generates all ψ0,m(τ, z) for m > 1.
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I Let us denote χ(Sm(K 3); τ, z) by ψ0,m(τ, z) as it is a Jacobi
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I The CFT for S2(K 3) is constructed as a permutation orbifold.

I CFT arguments show that for twining genera [SG]

ψρ0,2(τ, z) = 1
2 [ψρ0,1(τ, z)]2 + T (2) · ψρ0,1(τ, z) ,

where T (m) is now re-defined as follows:

T (m) · ψρ0,1(τ, z) :=
1

m

∑
ad=m

d−1∑
b=0

ψρa0,1

(
aτ+b
d , az

)
.

where ρa = [ga] when ρ = [g ] for some g ∈ M24.



A master formula

I A master formula that subsumes all such formulae is

exp
(
−
∞∑

m=1

sm T (m) · ψρ0,1(τ, z)
)

= 1 +
∞∑

m=1

sm ψρ0,m(τ, z) .

I This leads to a product formula for the generating function of
twined quarter-BPS states.

Φρ
k(Z)

s φρk,1(τ, z)
=

N−1∏
α=0

∞∏
m=1

∞∏
n=0

∏
`∈Z

4nm−`2≥0

(
1− ωαqnr `sm

)cα(nm,`)

where cα(nm, `) are determined by the coefficients from the
Fourier coefficients of ψρa0,1(τ, z).

I Are these Siegel modular forms? This product formula is not
standard in number theory.



Proposition (SG-KG Krishna, proved by Sutapa Samanta)

To every conjugacy class ρ = 1a12a2 · · ·NaN of M24, there exists a
genus two Siegel modular form, Φρ

k(Z) of weight k = −2 + 1
2

∑
i ai

of a level N sub-group of Sp(2,Z) such that

I its zeroth Fourier-Jacobi coefficient is given by

φρk,1(τ, z) = θ1(τ,z)2

η(τ)6 × ηρ(τ),

I and the Jacobi form ψρ0,1(τ, z) =
φρk,2(τ,z)

φρk,1(τ,z)
.

ηρ(τ)

ρ Φρ
k(Z)

ψρ0,1(τ, z)

There are two standard constructions of Siegel modular
forms that work in some but not all cases.

I An additive lift using φρk,1(τ, z):

Φρ
k(Z) = A(φρk,1)(Z). [Cléry-Gritsenko]

I A Borcherds product formula:
Φρ
k(Z) = Bψρ0,1(Z). [Cléry-Gritsenko]



The proof

The proof proceeds in two steps. First, there is a natural product
formula that one obtains from moonshine. This does not establish
modularity. In the second step, following Raum, modularity is
proved showing that the product formula is equivalent to the
product of multiple rescaled Borcherds products. This is done case
by case.

Example (The simplest case)

Φ10(Z) = A(φ10,1)(Z) = Bψ0,1(Z) .

Example (where rescaled products are needed)

Let ρ = [g ] = 2444. Then,

(Φ2444

2 (Z))4 = B
4ψ2444 (Z)B

2ψ1828 (2Z)B
ψ124 (4Z) .



L2(11) Moonshine
(SG and Sutapa Samanta)

ηρ̂(τ)

ρ̂ ∆ρ̂
k(Z) Lie Algebra

ψρ̂0,1(τ, z)



The square-root of the Igusa Cusp Form

I Gritsenko and Nikulin showed that ∆5(Z) =
√

Φ10(Z) is
associated with the Weyl-Kac-Borcherds (WKB) denominator
formula for a Borcherds-Kac-Moody (BKM) Lie superalgebra.

I The Cartan matrix of the real simple roots is

A(1) =

 2 −2 −2
−2 2 −2
−2 −2 2

 .

This is a rank three matrix with one negative eigenvalue.
I This raises a few questions:

I Does this have anything to do with the physical setting?
I Does the square-root make sense for all the Siegel modular

forms Φρ
k(Z) that we constructed for all M24 conjugacy classes?

I If yes, is there a BKM Lie superalgebra?



Walls of Marginal Stability N = 4 d = 4 string theory

I In N = 4 d = 4 string theory, 1
4 -BPS states can decay into

two 1
2 -BPS states as one moves across a wall.

I Let λ denote the complex modulus for the heterotic
dilaton-axion field.

I These walls are circular arcs in the upper half-plane given by[
Re(λ)− ad+bc

2ac

]2
+
[
Im(λ) + E

2ac

]2
= 1+E2

4a2c2 ,
(
a b
c d

)
∈ PSL(2,Z)

where E is a real function of all other moduli M. [Sen]

I The arcs intersect the real λ axis at b
a and d

c for any E .

I When E = 0, the arcs are semi-circles centred on the real
λ-axis with radius 1

2ac .

I When either a = 0 or c = 0, the circles become straight lines
perpendicular to the real axis for E = 0.



Example (Heterotic string compactified on T 6)

F1 = −1
0 ,
(

0
1 ,

1
1

)
, 1

0

−1
0

1
0

0
1

1
1

Cheng and Verlinde showed that these walls of marginal stability get

mapped to the walls of the Weyl chamber of the BKM Lie superalgebra



BKM Lie algebras from walls of marginal stability

I Cheng and Verlinde showed that these walls of marginal
stability get mapped to the walls of the Weyl chamber of the
BKM Lie superalgebra.

I To each edge with vertices (ba ,
d
c ), we can associate a (real)

simple root as follows:(
b
a ,

d
c

)
←→ α =

(
2bd ad + bc

ad + bc 2ac

)
∈ PGL(2,Z) .

I The norm of the root is given by −2 det(α).
I The Cartan matrix of the roots can be determined by the inner

product induced by the norm. For our example, we obtain

A(1) =

 2 −2 −2
−2 2 −2
−2 −2 2

 .

I The square-root of the Igusa cusp form provides the
automorphic correction to the above KM algebra.



The groups L2(11), M12 and M12 : 2

I Let Ω = PL(11) denote the projective line over F11, the field
of integers modulo 11.

I Ω be the set of order 12: (0, 1, 2, 3, . . . , 9,X = 10,∞).
I Let α, β, γ, δ denote the permutations of Ω:

α = (∞)(0, 1, 2, 3, 4, 5, 6, 7, 8, 9,X ) , γ = (∞, 0)(1,X ), (2, 5), (3, 7)(4, 8)(6, 9)

β = (∞)(0)(1, 3, 9, 5, 4)(2, 6, 7,X , 8) , δ = (∞)(0)(1)(2,X )(3, 4)(5, 9)(6, 7)(8)

I The simple groups L2(11)A/B and M12 are defined as follows:

L2(11)A = 〈α, β, γ〉; L2(11)B = 〈α, β, δ〉; M12 = 〈α, β, γ, δ〉.

I One has the following sequence of groups

L2(11)A/B ⊂ M12
ϕ−→ M12 :2 ⊂ M24 ,

where ϕ represents an outer automorphism of M12 given by

αϕ = ϕαϕ−1 = α−1 , βϕ = β , γϕ = γ−1 , δϕ = δ .



When does the square-root work?

I First, for conjugacy classes of M12 : 2 that map to conjugacy
classes of M24, ψρ0,1 have even coefficients.

I However, 1
2ψ

ρ
0,1(τ, z) works for all conjugacy classes of M12 : 2

that come from L2(11)A/B but not for M12.

I For these conjugacy classes, the square-root of the eta
product ηρ(τ) also works.

I We can write ψρ̂0,1(τ, z) = 1
2ψ

ρ
0,1(τ, z) and ηρ̂(τ) =

√
ηρ(τ).

I For example, ρ = 212 gets related to the L2(11)A conjugacy
class ρ̂ = 26.

I Let ∆ρ̂
k/2(Z) :=

√
Φρ
k(Z). One can prove that these are also

Siegel modular forms.



Proposition (SG and Sutapa Samanta)

Let ρ̂ = 1a12a2 · · ·NaN be a conjugacy class of L2(11)A or L2(11)B .

The Siegel modular form ∆ρ̂
k(Z) (with k = −1 + 1

2

∑
i ai ) provides

an automorphic correction to the Kac-Moody Lie algebra with
Cartan matrix A(1):

A(1) =

 2 −2 −2
−2 2 −2
−2 −2 2

 .



Concluding Remarks

I We have seen that there has been significant progress in the
counting of the degeneracy of microstates that contribute to
the entropy of black holes.

I The mysterious appearance of the Mathieu group in the
considerations enriched the story.

I Can we extend these considerations to string theories with
lesser supersymmetry?

I Can we explain the entropy non-extremal black holes? In
particular, what can we say about the entropy of the
Schwarzschild black hole?
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